Department of Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China.
Nat Commun. 2024 Oct 23;15(1):9129. doi: 10.1038/s41467-024-53088-6.
We present SpliceTransformer (SpTransformer), a deep-learning framework that predicts tissue-specific RNA splicing alterations linked to human diseases based on genomic sequence. SpTransformer outperforms all previous methods on splicing prediction. Application to approximately 1.3 million genetic variants in the ClinVar database reveals that splicing alterations account for 60% of intronic and synonymous pathogenic mutations, and occur at different frequencies across tissue types. Importantly, tissue-specific splicing alterations match their clinical manifestations independent of gene expression variation. We validate the enrichment in three brain disease datasets involving over 164,000 individuals. Additionally, we identify single nucleotide variations that cause brain-specific splicing alterations, and find disease-associated genes harboring these single nucleotide variations with distinct expression patterns involved in diverse biological processes. Finally, SpTransformer analysis of whole exon sequencing data from blood samples of patients with diabetic nephropathy predicts kidney-specific RNA splicing alterations with 83% accuracy, demonstrating the potential to infer disease-causing tissue-specific splicing events. SpTransformer provides a powerful tool to guide biological and clinical interpretations of human diseases.
我们提出了 SpliceTransformer(SpTransformer),这是一种基于基因组序列预测与人类疾病相关的组织特异性 RNA 剪接改变的深度学习框架。SpTransformer 在剪接预测方面优于所有以前的方法。在 ClinVar 数据库中约 130 万个遗传变异的应用表明,剪接改变占内含子和同义致病性突变的 60%,并且在不同组织类型中发生的频率不同。重要的是,组织特异性剪接改变与其临床表现独立于基因表达变化。我们在涉及超过 164000 个人的三个脑疾病数据集上进行了验证。此外,我们确定了导致脑特异性剪接改变的单核苷酸变异,并发现这些单核苷酸变异所涉及的疾病相关基因具有不同的表达模式,参与了不同的生物学过程。最后,SpTransformer 对糖尿病肾病患者血液样本的外显子测序数据进行分析,以 83%的准确率预测了肾脏特异性 RNA 剪接改变,这表明有潜力推断出致病的组织特异性剪接事件。SpTransformer 为指导人类疾病的生物学和临床解释提供了一个强大的工具。