Suppr超能文献

用于RNA剪接预测与设计的生成式建模

Generative modeling for RNA splicing predictions and design.

作者信息

Wu Di, Maus Natalie, Jha Anupama, Yang Kevin, Wales-McGrath Benjamin D, Jewell San, Tangiyan Anna, Choi Peter, Gardner Jacob R, Barash Yoseph

机构信息

Department of Computer and Information Science, School of Engineering, University of Pennsylvania.

Department of Genome Sciences, University of Washington.

出版信息

bioRxiv. 2025 Jan 24:2025.01.20.633986. doi: 10.1101/2025.01.20.633986.

Abstract

Alternative splicing (AS) of pre-mRNA plays a crucial role in tissue-specific gene regulation, with disease implications due to splicing defects. Predicting and manipulating AS can therefore uncover new regulatory mechanisms and aid in therapeutics design. We introduce TrASPr+BOS, a generative AI model with Bayesian Optimization for predicting and designing RNA for tissue-specific splicing outcomes. TrASPr is a multi-transformer model that can handle different types of AS events and generalize to unseen cellular conditions. It then serves as an oracle, generating labeled data to train a Bayesian Optimization for Splicing (BOS) algorithm to design RNA for condition-specific splicing outcomes. We show TrASPr+BOS outperforms existing methods, enhancing tissue-specific AUPRC by up to 2.4 fold and capturing tissue-specific regulatory elements. We validate hundreds of predicted novel tissue-specific splicing variations and confirm new regulatory elements using dCas13. We envision TrASPr+BOS as a light yet accurate method researchers can probe or adopt for specific tasks.

摘要

前体信使核糖核酸(pre-mRNA)的可变剪接(AS)在组织特异性基因调控中起着关键作用,剪接缺陷会引发疾病。因此,预测和操控可变剪接能够揭示新的调控机制,并有助于治疗方案的设计。我们引入了TrASPr+BOS,这是一种结合贝叶斯优化的生成式人工智能模型,用于预测和设计具有组织特异性剪接结果的RNA。TrASPr是一个多变压器模型,能够处理不同类型的可变剪接事件,并推广到未见过的细胞条件。然后,它作为一个神谕,生成标记数据来训练剪接贝叶斯优化(BOS)算法,以设计具有条件特异性剪接结果的RNA。我们表明,TrASPr+BOS优于现有方法,将组织特异性精确召回率(AUPRC)提高了2.4倍,并捕捉到组织特异性调控元件。我们验证了数百个预测的新型组织特异性剪接变异,并使用dCas13确认了新的调控元件。我们设想TrASPr+BOS是一种轻量级但准确的方法,研究人员可以针对特定任务进行探索或采用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a97d/11785043/fbbc9b054e5e/nihpp-2025.01.20.633986v1-f0007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验