Suppr超能文献

基于症状进展动态的帕金森病药物推荐。

Medication recommendation for Parkinson's disease based on dynamics of symptom progression.

机构信息

School of Industrial Management and Engineering, Korea University, Seoul, 02841, Korea.

出版信息

Sci Rep. 2024 Oct 23;14(1):25051. doi: 10.1038/s41598-024-76941-6.

Abstract

Parkinson's Disease (PD) is a chronic condition, with extensive research on initial medication selection for treatment, but limited guidance on long-term medication management. This study aims to identify optimal medication adjustment strategies based on patient clusters, focusing on either maximizing time spent in favorable health states or minimizing time spent in unfavorable ones while avoiding adverse effects. To guide treatment, we developed decision models using prescription dosages converted into standardized units for various medications. Using data from the Parkinson's Progression Markers Initiative, we employed a multivariate time-series clustering approach to capture symptom progression dynamics. This analysis identified four distinct clusters: two representing desirable and undesirable states, and two highlighting motor-focused and non-motor-focused failures across multiple domains. We developed two separate Markov Decision Process (MDP) models to address these dual objectives, which were then integrated into a comprehensive framework that suggests optimal actions and cautions against risky ones for each patient state. This model provides valuable insights for clinical decision-making by offering flexible guidance on adjusting medication intensity rather than prescribing specific medication types, enhancing its applicability in clinical practice.

摘要

帕金森病(PD)是一种慢性疾病,针对初始药物治疗选择进行了广泛的研究,但对长期药物管理的指导有限。本研究旨在根据患者群体确定最佳药物调整策略,重点关注最大限度地延长有利健康状态的时间或最大限度地减少不利状态的时间,同时避免不良反应。为了指导治疗,我们使用转换为标准化单位的各种药物的处方剂量开发了决策模型。利用帕金森进展标志物倡议的数据,我们采用多变量时间序列聚类方法来捕捉症状进展动态。这项分析确定了四个不同的集群:两个代表理想和不理想的状态,两个突出了多个领域的以运动为重点和不以运动为重点的失败。我们开发了两个单独的马尔可夫决策过程(MDP)模型来解决这两个目标,然后将它们整合到一个综合框架中,为每个患者状态提供最佳行动建议,并警告危险行动。该模型通过提供灵活的药物强度调整指导,而不是开具体药物类型的处方,为临床决策提供了有价值的见解,增强了其在临床实践中的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc33/11499640/04eadba66974/41598_2024_76941_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验