Group Laboratory Operations, Cordlife Group Limited, A'Posh Bizhub #06-01/09, 1 Yishun Industrial Street 1, Singapore, 768160, Singapore.
Sci Rep. 2024 Oct 23;14(1):25085. doi: 10.1038/s41598-024-75731-4.
The transplantation of CD34 hematopoietic stem-progenitor cells (HSPCs) derived from cord blood serves as the standard treatment for selected hematological, oncological, metabolic, and immunodeficiency disorders, of which the dose is pivotal to the clinical outcome. Based on numerous maternal and neonatal parameters, we evaluated the predictive power of mathematical pipelines to the proportion of CD34 cells in the final cryopreserved cord blood product adopting both parametric and non-parametric algorithms. Twenty-four predictor variables associated with the cord blood processing of 802 processed cord blood units randomly sampled in 2020-2022 were retrieved and analyzed. Prediction models were developed by adopting the parametric (multivariate linear regression) and non-parametric (random forest and back propagation neural network) statistical models to investigate the data patterns for determining the single outcome (i.e., the proportion of CD34 cells). The multivariate linear regression model produced the lowest root-mean-square deviation (0.0982). However, the model created by the back propagation neural network produced the highest median absolute deviation (0.0689) and predictive power (56.99%) in comparison to the random forest and multivariate linear regression. The predictive model depending on a combination of continuous and discrete maternal with neonatal parameters associated with cord blood processing can predict the CD34 dose in the final product for clinical utilization. The back propagation neural network algorithm produces a model with the highest predictive power which can be widely applied to assisting cell banks for optimal cord blood unit selection to ensure the highest chance of transplantation success.
脐血来源的 CD34 造血干祖细胞(HSPCs)移植已成为某些血液系统疾病、肿瘤、代谢和免疫缺陷疾病的标准治疗方法,其中剂量是临床疗效的关键。本研究基于众多母婴及新生儿参数,采用参数和非参数算法,评估了数学模型对最终冷冻保存脐血产品中 CD34 细胞比例的预测能力,共纳入了 2020 年至 2022 年随机抽取的 802 例脐血处理单元的 24 个与脐血处理相关的预测变量,并进行了分析。采用参数(多元线性回归)和非参数(随机森林和反向传播神经网络)统计模型来建立预测模型,以研究确定单一结果(即 CD34 细胞比例)的数据模式。多元线性回归模型产生的均方根偏差最小(0.0982)。然而,与随机森林和多元线性回归相比,反向传播神经网络产生的中值绝对偏差(0.0689)和预测能力(56.99%)最高。基于与脐血处理相关的连续和离散母婴参数组合的预测模型可以预测最终产品中的 CD34 剂量,以供临床应用。依赖于连续和离散母婴参数组合的预测模型可以预测最终产品中的 CD34 剂量,以辅助细胞库选择最佳的脐血单位,确保移植成功率最大化。反向传播神经网络算法产生的模型具有最高的预测能力,可广泛应用于辅助细胞库选择最佳的脐血单位,以确保移植成功率最大化。