Suppr超能文献

CystNet:一种使用超声图像多级阈值处理的 AI 驱动的多囊卵巢综合征检测模型。

CystNet: An AI driven model for PCOS detection using multilevel thresholding of ultrasound images.

机构信息

Department of Computer Science and Engineering, Birla Institute of Technology, Mesra, Ranchi, 835215, India.

出版信息

Sci Rep. 2024 Oct 23;14(1):25012. doi: 10.1038/s41598-024-75964-3.

Abstract

Polycystic Ovary Syndrome (PCOS) is a widespread endocrinological dysfunction impacting women of reproductive age, categorized by excess androgens and a variety of associated syndromes, consisting of acne, alopecia, and hirsutism. It involves the presence of multiple immature follicles in the ovaries, which can disrupt normal ovulation and lead to hormonal imbalances and associated health complications. Routine diagnostic methods rely on manual interpretation of ultrasound (US) images and clinical assessments, which are time-consuming and prone to errors. Therefore, implementing an automated system is essential for streamlining the diagnostic process and enhancing accuracy. By automatically analyzing follicle characteristics and other relevant features, this research aims to facilitate timely intervention and reduce the burden on healthcare professionals. The present study proposes an advanced automated system for detecting and classifying PCOS from ultrasound images. Leveraging Artificial Intelligence (AI) based techniques, the system examines affected and unaffected cases to enhance diagnostic accuracy. The pre-processing of input images incorporates techniques such as image resizing, normalization, augmentation, Watershed technique, multilevel thresholding, etc. approaches for precise image segmentation. Feature extraction is facilitated by the proposed CystNet technique, followed by PCOS classification utilizing both fully connected layers with 5-fold cross-validation and traditional machine learning classifiers. The performance of the model is rigorously evaluated using a comprehensive range of metrics, incorporating AUC score, accuracy, specificity, precision, F1-score, recall, and loss, along with a detailed confusion matrix analysis. The model demonstrated a commendable accuracy of [Formula: see text] when utilizing a fully connected classification layer, as determined by a thorough 5-fold cross-validation process. Additionally, it has achieved an accuracy of [Formula: see text] when employing an ensemble ML classifier. This proposed approach could be suggested for predicting PCOS or similar diseases using datasets that exhibit multimodal characteristics.

摘要

多囊卵巢综合征(PCOS)是一种广泛存在的内分泌功能障碍,影响育龄妇女,其特征是雄激素过多和多种相关综合征,包括痤疮、脱发和多毛症。它涉及卵巢中多个未成熟卵泡的存在,这可能会扰乱正常排卵,导致激素失衡和相关健康并发症。常规诊断方法依赖于对超声(US)图像和临床评估的手动解释,这既耗时又容易出错。因此,实施自动化系统对于简化诊断过程和提高准确性至关重要。通过自动分析卵泡特征和其他相关特征,本研究旨在促进及时干预和减轻医疗保健专业人员的负担。本研究提出了一种用于从超声图像中检测和分类 PCOS 的先进自动化系统。该系统利用基于人工智能(AI)的技术,检查受影响和未受影响的病例,以提高诊断准确性。输入图像的预处理包括图像缩放、归一化、增强、分水岭技术、多级阈值等方法,以实现精确的图像分割。通过提出的 CystNet 技术实现特征提取,然后使用 5 倍交叉验证的全连接层和传统机器学习分类器进行 PCOS 分类。使用一系列全面的指标(包括 AUC 得分、准确性、特异性、精度、F1 得分、召回率和损失,以及详细的混淆矩阵分析)严格评估模型的性能。通过彻底的 5 倍交叉验证过程,当使用全连接分类层时,该模型表现出令人称赞的[Formula: see text]准确率。此外,当使用集成 ML 分类器时,它的准确率达到了[Formula: see text]。该方法可用于预测 PCOS 或具有多模态特征的类似疾病的数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/137f/11499604/499619660b3f/41598_2024_75964_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验