文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

三元合金(NiCuCo)的物理性质调节用于体外磁热疗:实验和理论研究。

Tuning the physical properties of ternary alloys (NiCuCo) for in vitro magnetic hyperthermia: experimental and theoretical investigation.

机构信息

Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMISU), Riyadh, 11623, Saudi Arabia.

Nanoscience and Nanotechnology Unit, E.N.S Rabat ,Energy Research Centre, Mohammed V University, B.P. 5118, Takaddoum Rabat, Morocco.

出版信息

Sci Rep. 2024 Oct 23;14(1):25059. doi: 10.1038/s41598-024-76615-3.


DOI:10.1038/s41598-024-76615-3
PMID:39443656
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11499828/
Abstract

Most of published research on magnetic hyperthermia focused on iron oxides, ferrites, and binary alloy nanostructures, while the ternary alloys attracted much limited interest. Herein, we prepared NiCuCo ternary alloy nanocomposites with variable compositions by mechanical alloying. Physical properties were fully characterized by XRD, Rietveld analysis, XPS, SEM/EDX, TEM, ZFC/FC and H-M loops. DFT calculations were used to confirm the experimental results in terms of structure and magnetism. The results showed that the fabricated nanoalloys are face centered cubic (FCC) with average core sizes of 9-40 nm and behave as superparamagnetic with saturation in the range 4.67-42.63 emu/g. Langevin fitting corroborated the superparamagnetic behavior, while law of approach to saturation (LAS) was used to calculate the magnetic anisotropy constants. Heating effciencies were performed under an alternating magnetic field (AMF, H = 170 Oe and f = 332.5 kHz), and specific absorption rate (SAR) values were determined. The highest magnetic saturation (M), heating potentials, and SAR values were attained for NiCuCo containing the lowest Cu but highest Ni and Co percentages, and the least for NiCuCo. Importantly, the nanoalloys reached the required temperatures for magnetic hyperthermia (42 °C) in relatively short times. We also showed that heat dissipiation can be simply tuned by changing many parameters such as concentration, field amplitude, and frequency. Finally, cytotoxicity viability assays against two different breast cancer cell lines treated with NiCuCo nanoalloy in the presence and absence of AMF were investigated. No significant decrease in cancer cell viability was observed in the absence of AMF. When tested against tumorigenic KAIMRC2 breast cancer cells under AMF, the NiCuCo nanoalloy was found to be highly potent to the cells (~ 2-fold enhancement), killing almost all the cells in short times (20 min) and clinically-safe AC magnetic fields. These findings strongly suggest that the as-prepared ternary NiCuCo nanoalloys hold great promise for potential magnetically-triggered cancer hyperthermia.

摘要

大多数关于磁热疗的已发表研究都集中在氧化铁、铁氧体和二元合金纳米结构上,而三元合金则引起了有限的关注。在这里,我们通过机械合金化制备了具有可变成分的 NiCuCo 三元合金纳米复合材料。通过 XRD、Rietveld 分析、XPS、SEM/EDX、TEM、ZFC/FC 和 H-M 循环对物理性能进行了充分表征。DFT 计算用于从结构和磁性方面证实实验结果。结果表明,所制备的纳米合金为面心立方 (FCC),平均核心尺寸为 9-40nm,表现为超顺磁性,饱和磁化强度在 4.67-42.63 emu/g 范围内。朗之万拟合证实了超顺磁性行为,而接近饱和定律 (LAS) 用于计算磁各向异性常数。在交变磁场 (AMF,H=170 Oe,f=332.5 kHz) 下进行加热效率,确定比吸收率 (SAR) 值。在含有最低 Cu 但最高 Ni 和 Co 百分比的 NiCuCo 中,获得了最高的磁饱和 (M)、加热潜力和 SAR 值,而在 NiCuCo 中获得了最低的磁饱和 (M)、加热潜力和 SAR 值。重要的是,纳米合金在相对较短的时间内达到了磁热疗所需的温度 (42°C)。我们还表明,可以通过改变浓度、场强和频率等许多参数来简单地调节热量耗散。最后,研究了在存在和不存在 AMF 的情况下,用 NiCuCo 纳米合金处理两种不同乳腺癌细胞系的细胞毒性和存活率。在不存在 AMF 的情况下,癌细胞活力没有明显下降。当在 AMF 下对致瘤性 KAIMRC2 乳腺癌细胞进行测试时,发现 NiCuCo 纳米合金对细胞具有很高的效力 (~2 倍增强),在短时间内(20 分钟)杀死几乎所有细胞,并且使用临床安全的交流磁场。这些发现强烈表明,所制备的三元 NiCuCo 纳米合金在潜在的磁性触发癌症热疗方面具有很大的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11499828/571a5dc5c75f/41598_2024_76615_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11499828/02bc0125865c/41598_2024_76615_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11499828/2e9f14094665/41598_2024_76615_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11499828/45dff9cf7c8c/41598_2024_76615_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11499828/50d27c717433/41598_2024_76615_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11499828/0803722307ce/41598_2024_76615_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11499828/087467e0984a/41598_2024_76615_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11499828/ee5ea9ae3e9d/41598_2024_76615_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11499828/1215cba5d4d0/41598_2024_76615_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11499828/ba2d06965de6/41598_2024_76615_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11499828/d66f9be97f69/41598_2024_76615_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11499828/6909c5fc9508/41598_2024_76615_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11499828/4f54aab475b3/41598_2024_76615_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11499828/5c05769a4f9e/41598_2024_76615_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11499828/4c34df9666f0/41598_2024_76615_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11499828/571a5dc5c75f/41598_2024_76615_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11499828/02bc0125865c/41598_2024_76615_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11499828/2e9f14094665/41598_2024_76615_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11499828/45dff9cf7c8c/41598_2024_76615_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11499828/50d27c717433/41598_2024_76615_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11499828/0803722307ce/41598_2024_76615_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11499828/087467e0984a/41598_2024_76615_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11499828/ee5ea9ae3e9d/41598_2024_76615_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11499828/1215cba5d4d0/41598_2024_76615_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11499828/ba2d06965de6/41598_2024_76615_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11499828/d66f9be97f69/41598_2024_76615_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11499828/6909c5fc9508/41598_2024_76615_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11499828/4f54aab475b3/41598_2024_76615_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11499828/5c05769a4f9e/41598_2024_76615_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11499828/4c34df9666f0/41598_2024_76615_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11499828/571a5dc5c75f/41598_2024_76615_Fig15_HTML.jpg

相似文献

[1]
Tuning the physical properties of ternary alloys (NiCuCo) for in vitro magnetic hyperthermia: experimental and theoretical investigation.

Sci Rep. 2024-10-23

[2]
Preparation and characterization of various PVPylated divalent metal-doped ferrite nanoparticles for magnetic hyperthermia.

RSC Adv. 2024-5-14

[3]
Hyperthermia of Magnetically Soft-Soft Core-Shell Ferrite Nanoparticles.

Int J Mol Sci. 2022-11-26

[4]
Assessing the Heat Generation and Self-Heating Mechanism of Superparamagnetic FeO Nanoparticles for Magnetic Hyperthermia Application: The Effects of Concentration, Frequency, and Magnetic Field.

Nanomaterials (Basel). 2023-1-22

[5]
Application of biocompatible and ultrastable superparamagnetic iron(III) oxide nanoparticles doped with magnesium for efficient magnetic fluid hyperthermia in lung cancer cells.

J Mater Chem B. 2023-5-10

[6]
Optimization of the Preparation of Magnetic Liposomes for the Combined Use of Magnetic Hyperthermia and Photothermia in Dual Magneto-Photothermal Cancer Therapy.

Int J Mol Sci. 2020-7-22

[7]
Ni-Cu Nanoparticles and Their Feasibility for Magnetic Hyperthermia.

Nanomaterials (Basel). 2020-10-9

[8]
Comparative Heating Efficiency of Cobalt-, Manganese-, and Nickel-Ferrite Nanoparticles for a Hyperthermia Agent in Biomedicines.

ACS Appl Mater Interfaces. 2019-2-7

[9]
High therapeutic efficiency of magnetic hyperthermia in xenograft models achieved with moderate temperature dosages in the tumor area.

Pharm Res. 2014-12

[10]
Magnetothermoacoustics from magnetic nanoparticles by short bursting or frequency chirped alternating magnetic field: a theoretical feasibility analysis.

Med Phys. 2013-6

本文引用的文献

[1]
Maghemite (γ-FeO) and γ-FeO-TiO Nanoparticles for Magnetic Hyperthermia Applications: Synthesis, Characterization and Heating Efficiency.

Materials (Basel). 2021-9-30

[2]
Isolation and Establishment of a Highly Proliferative, Cancer Stem Cell-Like, and Naturally Immortalized Triple-Negative Breast Cancer Cell Line, KAIMRC2.

Cells. 2021-5-24

[3]
Deciphering magnetic hyperthermia properties of compositionally and morphologically modulated FeNi nanoparticles using first-order reversal curve analysis.

Nanotechnology. 2018-11-2

[4]
Large orbital magnetic moments of small, free cobalt cluster ions Co[Formula: see text] with n [Formula: see text].

J Phys Condens Matter. 2018-11-21

[5]
Magnetic iron oxide nanoparticles as drug carriers: clinical relevance.

Nanomedicine (Lond). 2018-1-29

[6]
Giant Magnetic Heat Induction of Magnesium-Doped γ-Fe O Superparamagnetic Nanoparticles for Completely Killing Tumors.

Adv Mater. 2017-12-20

[7]
Superparamagnetic iron oxide nanocargoes for combined cancer thermotherapy and MRI applications.

Phys Chem Chem Phys. 2016-8-3

[8]
Comparison Study on the Stability of Copper Nanowires and Their Oxidation Kinetics in Gas and Liquid.

ACS Nano. 2016-3-7

[9]
Influence of copper content on the electrocatalytic activity toward methanol oxidation of Co(χ)Cu(y) alloy nanoparticles-decorated CNFs.

Sci Rep. 2015-11-16

[10]
Magnetic hyperthermia with magnetic nanoparticles: a status review.

Curr Top Med Chem. 2014-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索