Suppr超能文献

诱导的SNAP融合蛋白降解。

Induced degradation of SNAP-fusion proteins.

作者信息

Pol Savina Abraham, Liljenberg Sara, Barr Jack, Simon Gina, Wong-Dilworth Luis, Paterson Danielle L, Berishvili Vladimir P, Bottanelli Francesca, Kaschani Farnusch, Kaiser Markus, Pettersson Mariell, Hellerschmied Doris

机构信息

Department of Mechanistic Cell Biology, University of Duisburg-Essen, Center of Medical Biotechnology, Faculty of Biology Essen Germany

Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca Gothenburg 431 83 Sweden

出版信息

RSC Chem Biol. 2024 Oct 21;5(12):1232-47. doi: 10.1039/d4cb00184b.

Abstract

Self-labeling protein tags are an efficient means to visualize, manipulate, and isolate engineered fusion proteins with suitable chemical probes. The SNAP-tag, which covalently conjugates to benzyl-guanine and -chloropyrimidine derivatives is used extensively in fluorescence microscopy, given the availability of suitable SNAP-ligand-based probes. Here, we extend the applicability of the SNAP-tag to targeted protein degradation. We developed a set of SNAP PROteolysis TArgeting Chimeras (SNAP-PROTACs), which recruit the VHL or CRBN-ubiquitin E3 ligases to induce the degradation of SNAP-fusion proteins. Endogenous tagging enabled the visualization and the selective depletion of a SNAP-clathrin light chain fusion protein using SNAP-PROTACs. The addition of PROTACs to the SNAP-tag reagent toolbox facilitates the comprehensive analysis of protein function with a single gene tagging event.

摘要

自标记蛋白标签是一种利用合适的化学探针来可视化、操作和分离工程融合蛋白的有效方法。SNAP标签可与苄基鸟嘌呤和氯嘧啶衍生物共价结合,鉴于有合适的基于SNAP配体的探针,它在荧光显微镜中被广泛应用。在此,我们将SNAP标签的适用性扩展到靶向蛋白降解。我们开发了一组SNAP蛋白酶靶向嵌合体(SNAP-PROTACs),其招募VHL或CRBN泛素E3连接酶来诱导SNAP融合蛋白的降解。内源性标记能够利用SNAP-PROTACs实现SNAP-网格蛋白轻链融合蛋白的可视化和选择性消耗。将PROTACs添加到SNAP标签试剂工具箱中,有助于通过单个基因标记事件对蛋白功能进行全面分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c25/11600403/73f2d9143dfa/d4cb00184b-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验