Kim Jae Young, Park Sung Hyuk, Kim Yeong Jae, Kim Jae Hyun, Choi Sung Kyun, Kwon Hee Ryeong, Lee Yoon Jung, Kim Seung Ju, Shin Dongmin, Yeo Byungwook, Kim Beom-Jong, Jung Hyung-Suk, Jang Ho Won
Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea.
Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States of America.
ACS Appl Mater Interfaces. 2024 Nov 6;16(44):60811-60818. doi: 10.1021/acsami.4c12407. Epub 2024 Oct 24.
As electronic circuit integration intensifies, there is a rising demand for dielectric insulators that provide both superior insulation and high dielectric constants. This study focuses on developing high-k dielectric insulators by controlling the phase of the HfZrO (HZO) film with additional doping, utilizing yttrium (Y), tantalum (Ta), gallium (Ga), silicon (Si), and aluminum (Al) as dopants. Doping changes the ratio of tetragonal to monoclinic phases in doped HZO films, and Y-doped HZO (Y:HZO) films specifically exhibit a high tetragonal phase ratio and a dielectric constant of 40.9, indicating superior insulating properties compared to undoped HZO films. To clarify the fundamental mechanism driving the enhancement in dielectric properties, we have carried out various analyses combined with density functional theory (DFT) calculations. Through the optimization of the post-deposition annealing (PDA) process and the heterojunction structure with AlO, an AlO/Y:HZO heterojunction with a high dielectric constant and even lower leakage current compared to a single layer was developed. The thin-film transistor (TFT) with the Au/Ti/amorphous InGaZnO (a-IGZO)/AlO/YHZO/TiN heterojunction structure exhibits low subthreshold swing (SS) values within a narrow gate-source voltage () range. This study advances knowledge on how the controlled-phase doped HZO films affect the dielectric constant and leakage current and will contribute to semiconductor technology advancements by overcoming the limitations of conventional high-k dielectric insulators.
随着电子电路集成度的提高,对兼具优异绝缘性能和高介电常数的介电绝缘体的需求日益增长。本研究聚焦于通过额外掺杂来控制HfZrO(HZO)薄膜的相,从而开发高k介电绝缘体,使用钇(Y)、钽(Ta)、镓(Ga)、硅(Si)和铝(Al)作为掺杂剂。掺杂改变了掺杂HZO薄膜中四方相和单斜相的比例,特别是Y掺杂的HZO(Y:HZO)薄膜表现出高四方相比和40.9的介电常数,表明与未掺杂的HZO薄膜相比具有优异的绝缘性能。为了阐明驱动介电性能增强的基本机制,我们结合密度泛函理论(DFT)计算进行了各种分析。通过优化沉积后退火(PDA)工艺和与AlO的异质结结构,开发出了一种介电常数更高且漏电流比单层更低的AlO/Y:HZO异质结。具有Au/Ti/非晶InGaZnO(a-IGZO)/AlO/YHZO/TiN异质结结构的薄膜晶体管(TFT)在较窄的栅源电压()范围内表现出低亚阈值摆幅(SS)值。本研究推进了关于可控相掺杂的HZO薄膜如何影响介电常数和漏电流的知识,并将通过克服传统高k介电绝缘体的局限性为半导体技术进步做出贡献。