Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.
Department of Biology, Faculty of Science, Mustansiriyah University, Baghdad, Iraq.
World J Microbiol Biotechnol. 2024 Oct 24;40(11):362. doi: 10.1007/s11274-024-04159-9.
Bacterial cellulose (BC) is a highly versatile biopolymer renowned for its exceptional mechanical strength, water retention, and biocompatibility. These properties make it a valuable material for various industrial and biomedical applications. In this study, Enterococcus faecalis synthesized extracellular BC, utilizing Phoenix dactylifera and Musa acuminata fruit extracts as sustainable carbon sources. LC-MS analysis identified glucose as the primary carbohydrate in these extracts, providing a suitable substrate for BC production. Scanning Electron Microscopy (SEM) revealed a network of BC nanofibers on Congo red agar plates. ATR-FTIR spectroscopy confirmed the presence of characteristic cellulose functional groups, further supporting BC synthesis. X-ray diffraction (XRD) analysis indicated a high crystallinity index of 71%, consistent with the cellulose I structure, as evidenced by peaks at 16.22°, 21.46°, 22.52°, and 34.70°. Whole-genome sequencing of E. faecalis identified vital genes involved in BC biosynthesis, including bcsA, bcsB, diguanylate cyclase (DGC), and 6-phosphofructokinase (pfkA). Antibiotic susceptibility tests revealed resistance to cefotaxime, ceftazidime, and ceftriaxone, while susceptibility to imipenem was observed. Quantitative assessment demonstrated that higher concentrations of fruit extracts (5.0-20 mg/mL) significantly enhanced BC production. Cytotoxicity testing via the MTT assay confirmed excellent biocompatibility with NIH/3T3 fibroblast cells, showing high cell viability (97-105%). Unlike commonly studied Gram-negative bacteria like Acetobacter xylinum for BC production, this research focuses on Gram-positive Enterococcus faecalis and utilizes Phoenix dactylifera and Musa acuminata fruit extracts as carbon sources. This approach offers a sustainable and promising avenue for BC production.
细菌纤维素 (BC) 是一种用途广泛的生物聚合物,以其出色的机械强度、保水性和生物相容性而闻名。这些特性使其成为各种工业和生物医学应用的有价值材料。在这项研究中,粪肠球菌利用海枣和香蕉的果实提取物作为可持续的碳源合成了细胞外 BC。LC-MS 分析确定这些提取物中的主要碳水化合物为葡萄糖,为 BC 生产提供了合适的底物。扫描电子显微镜 (SEM) 显示在刚果红琼脂平板上形成了 BC 纳米纤维网络。衰减全反射傅里叶变换红外光谱 (ATR-FTIR) 证实了纤维素特征官能团的存在,进一步支持了 BC 的合成。X 射线衍射 (XRD) 分析表明结晶度指数为 71%,与纤维素 I 结构一致,这可以从 16.22°、21.46°、22.52°和 34.70°的峰得到证明。粪肠球菌的全基因组测序确定了参与 BC 生物合成的重要基因,包括 bcsA、bcsB、二鸟苷酸环化酶 (DGC) 和 6-磷酸果糖激酶 (pfkA)。抗生素敏感性测试显示对头孢噻肟、头孢他啶和头孢曲松具有抗性,而对亚胺培南敏感。定量评估表明,较高浓度的果实提取物 (5.0-20mg/mL) 显著提高了 BC 的产量。通过 MTT 测定的细胞毒性试验证实了与 NIH/3T3 成纤维细胞的极好生物相容性,显示出高细胞活力 (97-105%)。与通常用于 BC 生产的革兰氏阴性菌醋酸杆菌不同,本研究专注于革兰氏阳性粪肠球菌,并利用海枣和香蕉的果实提取物作为碳源。这种方法为 BC 生产提供了一种可持续且有前途的途径。