Suppr超能文献

CFSSynergy:结合基于特征和基于相似性的方法进行药物协同作用预测。

CFSSynergy: Combining Feature-Based and Similarity-Based Methods for Drug Synergy Prediction.

机构信息

Department of Epidemiology and Biostatistics, School of Health, Tehran University of Medical Sciences, Tehran 14167-53955, Iran.

Laboratory of System Biology, Bioinformatics & Artificial Intelligence in Medicine (LBB&AI), Faculty of Mathematics and Computer Science, Kharazmi University, Tehran 14588-89694, Iran.

出版信息

J Chem Inf Model. 2024 Apr 8;64(7):2577-2585. doi: 10.1021/acs.jcim.3c01486. Epub 2024 Mar 21.

Abstract

Drug synergy prediction plays a vital role in cancer treatment. Because experimental approaches are labor-intensive and expensive, computational-based approaches get more attention. There are two types of computational methods for drug synergy prediction: feature-based and similarity-based. In feature-based methods, the main focus is to extract more discriminative features from drug pairs and cell lines to pass to the task predictor. In similarity-based methods, the similarities among all drugs and cell lines are utilized as features and fed into the task predictor. In this work, a novel approach, called CFSSynergy, that combines these two viewpoints is proposed. First, a discriminative representation is extracted for paired drugs and cell lines as input. We have utilized transformer-based architecture for drugs. For cell lines, we have created a similarity matrix between proteins using the Node2Vec algorithm. Then, the new cell line representation is computed by multiplying the protein-protein similarity matrix and the initial cell line representation. Next, we compute the similarity between unique drugs and unique cells using the learned representation for paired drugs and cell lines. Then, we compute a new representation for paired drugs and cell lines based on the similarity-based features and the learned features. Finally, these features are fed to XGBoost as a task predictor. Two well-known data sets were used to evaluate the performance of our proposed method: DrugCombDB and OncologyScreen. The CFSSynergy approach consistently outperformed existing methods in comparative evaluations. This substantiates the efficacy of our approach in capturing complex synergistic interactions between drugs and cell lines, setting it apart from conventional similarity-based or feature-based methods.

摘要

药物协同作用预测在癌症治疗中起着至关重要的作用。由于实验方法既费力又昂贵,基于计算的方法得到了更多的关注。用于药物协同作用预测的计算方法有两种类型:基于特征的和基于相似性的。在基于特征的方法中,主要重点是从药物对和细胞系中提取更多有区别的特征,然后传递给任务预测器。在基于相似性的方法中,利用所有药物和细胞系之间的相似性作为特征,并将其输入任务预测器。在这项工作中,提出了一种称为 CFSSynergy 的新方法,该方法结合了这两种观点。首先,提取了用于配对药物和细胞系的有区别的表示形式作为输入。我们已经使用基于转换器的架构来表示药物。对于细胞系,我们使用 Node2Vec 算法在蛋白质之间创建了一个相似性矩阵。然后,通过将蛋白质-蛋白质相似性矩阵与初始细胞系表示相乘,计算出新的细胞系表示。接下来,我们使用学习到的用于配对药物和细胞系的表示形式,计算独特药物和独特细胞之间的相似性。然后,我们根据基于相似性的特征和学习到的特征为配对药物和细胞系计算新的表示形式。最后,这些特征被输入到 XGBoost 中作为任务预测器。使用两个著名的数据集来评估我们提出的方法的性能:DrugCombDB 和 OncologyScreen。CFSSynergy 方法在比较评估中始终优于现有方法。这证明了我们的方法在捕捉药物和细胞系之间复杂协同相互作用方面的有效性,使其有别于传统的基于相似性或基于特征的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验