Suppr超能文献

用于批量生产具有增强摩擦学性能的复杂类富勒烯MoS纳米结构的简便合成路线

Facile Synthesis Route for Bulk Production of Complex Fullerene-Like MoS Nanostructures With Enhanced Tribological Properties.

作者信息

Drnovšek Aljaž, Vengust Damjan, Šumandl Patrik, Korbar Domen, Mrzel Aleš, Vilfan Mojca

机构信息

J. Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.

Mahle Electric Drives Slovenija, Polje 15, 5290, Šempeter pri Gorici, Slovenia.

出版信息

Chempluschem. 2025 Jan;90(1):e202400480. doi: 10.1002/cplu.202400480. Epub 2024 Nov 17.

Abstract

Molybdenum-based nanoparticles are often used as oil additives to enhance a material's tribological performance. Here, we present a highly efficient synthetic route for the bulk production of two types of MoS nanostructures: multi-wall nanotubes and fullerene-like nanostructures. The presented two-step synthesis involves the transformation of ammonium heptamolybdate tetrahydrate and aniline into precursor nanowires, which are later transformed into MoS through heating in a HS, H, and argon atmosphere to approximately 800 °C. Depending on the heating rate, we successfully grew MoS layered compounds in various shapes and sizes. The resulting structures and compositions were characterised by X-ray powder diffraction, Raman spectroscopy, energy-dispersive X-ray spectroscopy, and electron microscopy. To assess the application potential of these MoS compounds, they were dispersed in polyalphaolefin (PAO 6) oil. Improved tribological properties were observed compared to typically used transition metal dichalcogenides.

摘要

钼基纳米颗粒常被用作油添加剂以提高材料的摩擦学性能。在此,我们展示了一种用于大规模生产两种类型MoS纳米结构的高效合成路线:多壁纳米管和类富勒烯纳米结构。所提出的两步合成法涉及将四水合七钼酸铵和苯胺转化为前驱体纳米线,随后在硫化氢、氢气和氩气气氛中加热至约800°C,将其转化为MoS。根据加热速率,我们成功生长出了各种形状和尺寸的MoS层状化合物。通过X射线粉末衍射、拉曼光谱、能量色散X射线光谱和电子显微镜对所得结构和成分进行了表征。为了评估这些MoS化合物的应用潜力,将它们分散在聚α烯烃(PAO 6)油中。与典型使用的过渡金属二硫属化物相比,观察到了改善的摩擦学性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0c9/11734581/a7786f6cdec7/CPLU-90-e202400480-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验