Žalnėravičius Rokas, Klimas Vaclovas, Paškevičius Algimantas, Grincienė Giedrė, Karpicz Renata, Jagminas Arūnas, Ramanavičius Arūnas
Centre for Physical Sciences and Technology, Sauletekio av. 3, LT-10257 Vilnius, Lithuania.
Laboratory of Biodeterioration Research, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania.
J Colloid Interface Sci. 2021 Jun;591:115-128. doi: 10.1016/j.jcis.2021.01.103. Epub 2021 Feb 3.
In this research the molybdenum disulfide (MoS)-based nano/microparticles and coatings were synthesized through a simple, one-step hydrothermal approach without any other additives. Composition, structure, and morphology of the synthesized MoS-based materials were investigated using ultraviolet-visible spectroscopy (UV-Vis), inductively coupled plasma optical emission spectrometry (ICP-OES), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX) techniques. The fabricated materials exhibited relatively small (Δθ = 18.7 ± 2.5⁰) contact angle and prominent hydrophilic properties, which are attributable to sulfur-enriched MoS composite as evidenced by simultaneous thermal analysis (STA) coupled with mass spectrometric (MS) analysis of evolving gaseous species (TG/DTA-MS) analysis. Such nanostructures exhibit a better adhesion of biomolecules, thus facilitating the interaction between them, as confirmed by highly effective antimicrobial action. The present study examines antimicrobial properties of hydrophilic, sulfur-enriched MoS nano/microparticles as well as MoS-based coatings against various humans' pathogenic bacteria such as Salmonella enterica, Pseudomonas aeruginosa, Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA), Micrococcus luteus, and two Candida yeast strains (C. parapsilosis, C. krusei). The MoS-ns (40 μg mL) showed over 90% killing efficiency against S. aureus MRSA bacteria and both Candida yeast when exposed for 24 h. Petal-like MoS microstructures and heterostructured MoS/Ti and Pd/MoS/Ti coatings also possessed high antimicrobial potential and are considered as a promising antimicrobial agent. The MoS-induced production of intracellular reactive oxygen species (ROS) was evidenced by measuring the standard DCF dye fluorescence.
在本研究中,通过简单的一步水热法合成了基于二硫化钼(MoS)的纳米/微粒及涂层,未添加任何其他添加剂。使用紫外可见光谱(UV-Vis)、电感耦合等离子体发射光谱(ICP-OES)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、原子力显微镜(AFM)、X射线衍射(XRD)、X射线光电子能谱(XPS)和能量色散X射线光谱(EDX)技术对合成的基于MoS的材料的组成、结构和形态进行了研究。所制备的材料表现出相对较小的(Δθ = 18.7 ± 2.5⁰)接触角和显著的亲水性,这归因于富硫的MoS复合材料,这一点通过对逸出气体物种的同步热分析(STA)与质谱(MS)分析(TG/DTA-MS)得以证实。这种纳米结构表现出更好的生物分子附着力,从而促进它们之间的相互作用,高效抗菌作用证实了这一点。本研究考察了亲水性、富硫的MoS纳米/微粒以及基于MoS的涂层对各种人类病原菌如肠炎沙门氏菌、铜绿假单胞菌、大肠杆菌、耐甲氧西林金黄色葡萄球菌(MRSA)、藤黄微球菌以及两种念珠菌酵母菌株(近平滑念珠菌、克柔念珠菌)的抗菌性能。当暴露24小时时,MoS-ns(40 μg mL)对金黄色葡萄球菌MRSA细菌和两种念珠菌酵母的杀灭效率均超过90%。花瓣状MoS微观结构以及异质结构的MoS/Ti和Pd/MoS/Ti涂层也具有很高的抗菌潜力,被认为是一种有前景的抗菌剂。通过测量标准DCF染料荧光证明了MoS诱导细胞内活性氧(ROS)的产生。