Suppr超能文献

机器学习利用负担得起的血液检测预测儿科经典霍奇金淋巴瘤的中期反应。

Machine Learning to Predict Interim Response in Pediatric Classical Hodgkin Lymphoma Using Affordable Blood Tests.

机构信息

Department of Paediatrics and Child Health, Paediatric Haematology-Oncology, Charlotte Maxeke Johannesburg Academic Hospital, Wits Donald Gordon Medical Centre, University of the Witwatersrand, Johannesburg, South Africa.

Computer Science, St Andrew's University, St Andrew's, United Kingdom.

出版信息

JCO Glob Oncol. 2024 Oct;10:e2300435. doi: 10.1200/GO.23.00435. Epub 2024 Oct 24.

Abstract

PURPOSE

Response assessment of classical Hodgkin lymphoma (cHL) with positron emission tomography-computerized tomography (PET-CT) is standard of care in well-resourced settings but unavailable in most African countries. We aimed to investigate correlations between changes in PET-CT findings at interim analysis with changes in blood test results in pediatric patients with cHL in 17 South African centers.

METHODS

Changes in ferritin, lactate dehydrogenase (LDH), erythrocyte sedimentation rate (ESR), albumin, total white cell count (TWC), absolute lymphocyte count (ALC), and absolute eosinophil count were compared with PET-CT Deauville scores (DS) after two cycles of doxorubicin, bleomycin, vinblastine, and dacarbazine in 84 pediatric patients with cHL. DS 1-3 denoted rapid early response (RER) while DS 4-5 denoted slow early response (SER). Missing values were imputed using the k-nearest neighbor algorithm. Baseline and follow-up blood test values were combined into a single difference variable. Data were split into training and testing sets for analysis using Python scikit-learn 1.2.2 with logistic regression, random forests, naïve Bayes, and support vector machine classifiers.

RESULTS

Random forest analysis achieved the best validated test accuracy of 73% when predicting RER or SER from blood samples. When applied to the full data set, the optimal model had a predictive accuracy of 80% and a receiver operating characteristic AUC of 89%. The most predictive variable was the differences in ALC, contributing 21% to the model. Differences in ferritin, LDH, and TWC contributed 15%-16%. Differences in ESR, hemoglobin, and albumin contributed 11%-12%.

CONCLUSION

Changes in low-cost, widely available blood tests may predict chemosensitivity for pediatric cHL without access to PET-CT, identifying patients who may not require radiotherapy. Changes in these nonspecific blood tests should be assessed in combination with clinical findings and available imaging to avoid undertreatment.

摘要

目的

在资源充足的环境中,采用正电子发射断层扫描-计算机断层扫描(PET-CT)对经典霍奇金淋巴瘤(cHL)进行疗效评估是标准治疗方法,但在大多数非洲国家无法获得。我们旨在研究在 17 个南非中心的 84 例 cHL 儿科患者中,中期分析时 PET-CT 发现的变化与血液检查结果变化之间的相关性。

方法

在 84 例 cHL 儿科患者接受两个周期多柔比星、博来霉素、长春碱和达卡巴嗪治疗后,比较 ferritin、乳酸脱氢酶(LDH)、红细胞沉降率(ESR)、白蛋白、总白细胞计数(TWC)、绝对淋巴细胞计数(ALC)和绝对嗜酸性粒细胞计数与 PET-CT Deauville 评分(DS)的变化。DS 1-3 表示快速早期反应(RER),而 DS 4-5 表示缓慢早期反应(SER)。缺失值使用 k-最近邻算法进行插补。将基线和随访的血液检查值合并为单个差值变量。使用 Python scikit-learn 1.2.2 中的逻辑回归、随机森林、朴素贝叶斯和支持向量机分类器将数据分为训练集和测试集进行分析。

结果

随机森林分析在从血液样本预测 RER 或 SER 时达到了 73%的最佳验证测试准确性。当应用于整个数据集时,最佳模型的预测准确率为 80%,接收器操作特征曲线 AUC 为 89%。最具预测性的变量是 ALC 的差异,对模型的贡献为 21%。铁蛋白、LDH 和 TWC 的差异分别贡献了 15%-16%。ESR、血红蛋白和白蛋白的差异分别贡献了 11%-12%。

结论

在无法进行 PET-CT 的情况下,使用低成本、广泛可用的血液检查来预测儿科 cHL 的化疗敏感性,可以识别出可能不需要放疗的患者。这些非特异性血液检查的变化应与临床发现和可用的影像学检查相结合进行评估,以避免治疗不足。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7b1/11529834/090d08b0bccd/go-10-e2300435-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验