Suppr超能文献

纹状体通过两条平行于经典基底神经节回路的通路控制多巴胺。

Striosomes control dopamine via dual pathways paralleling canonical basal ganglia circuits.

机构信息

McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Curr Biol. 2024 Nov 18;34(22):5263-5283.e8. doi: 10.1016/j.cub.2024.09.070. Epub 2024 Oct 23.

Abstract

Balanced activity of canonical direct D1 and indirect D2 basal ganglia pathways is considered a core requirement for normal movement, and their imbalance is an etiologic factor in movement and neuropsychiatric disorders. We present evidence for a conceptually equivalent pair of direct D1 and indirect D2 pathways that arise from striatal projection neurons (SPNs) of the striosome compartment rather than from SPNs of the matrix, as do the canonical pathways. These striosomal D1 (S-D1) and D2 (S-D2) pathways target substantia nigra dopamine-containing neurons instead of basal ganglia motor output nuclei. They modulate movement with net effects opposite to those exerted by the canonical pathways: S-D1 is net inhibitory and S-D2 is net excitatory. The S-D1 and S-D2 circuits likely influence motivation for learning and action, complementing and reorienting canonical pathway modulation. A major conceptual reformulation of the classic direct-indirect pathway model of basal ganglia function is needed, as well as reconsideration of the effects of D2-targeting therapeutic drugs.

摘要

经典的基底神经节直接-间接通路模型需要进行重大的概念重构,以及重新考虑靶向 D2 的治疗药物的影响。平衡的经典直接 D1 和间接 D2 基底神经节通路的活动被认为是正常运动的核心要求,它们的不平衡是运动和神经精神障碍的一个病因因素。我们提出了一个概念上等同的直接 D1 和间接 D2 通路对,它们起源于纹状体的结构域中的纹状体投射神经元(SPN),而不是经典通路那样起源于基质中的 SPN。这些纹状体 D1(S-D1)和 D2(S-D2)通路的目标是含有多巴胺的黑质神经元,而不是基底神经节运动输出核。它们通过与经典通路相反的净效应来调节运动:S-D1 是净抑制性的,而 S-D2 是净兴奋性的。S-D1 和 S-D2 回路可能影响学习和行动的动机,补充和重新定向经典通路的调节。

相似文献

1
Striosomes control dopamine via dual pathways paralleling canonical basal ganglia circuits.
Curr Biol. 2024 Nov 18;34(22):5263-5283.e8. doi: 10.1016/j.cub.2024.09.070. Epub 2024 Oct 23.
8
Dynamic postnatal development of the cellular and circuit properties of striatal D1 and D2 spiny projection neurons.
J Physiol. 2019 Nov;597(21):5265-5293. doi: 10.1113/JP278416. Epub 2019 Oct 10.
10

引用本文的文献

3
A decision-space model explains context-specific decision-making.
Nat Commun. 2025 Aug 14;16(1):7437. doi: 10.1038/s41467-025-61466-x.
4
Unraveling Pallido-Retrorubral Circuits Linking the Basal Ganglia to Limbic Areas.
J Neurosci. 2025 Jul 2;45(27):e0476252025. doi: 10.1523/JNEUROSCI.0476-25.2025.
5
The striatal compartments, striosome and matrix, are embedded in largely distinct resting-state functional networks.
Front Neural Circuits. 2025 May 16;19:1514937. doi: 10.3389/fncir.2025.1514937. eCollection 2025.
6
Sex differences in histamine regulation of striatal dopamine.
J Neurosci. 2025 May 12. doi: 10.1523/JNEUROSCI.2182-24.2025.
7
The striatal matrix compartment is expanded in autism spectrum disorder.
J Neurodev Disord. 2025 Feb 15;17(1):8. doi: 10.1186/s11689-025-09596-7.
8
A decision-space model explains context-specific decision-making.
Res Sq. 2024 Dec 3:rs.3.rs-5499511. doi: 10.21203/rs.3.rs-5499511/v1.
9
Sexual dimorphism in histamine regulation of striatal dopamine.
bioRxiv. 2025 Feb 28:2024.05.20.595049. doi: 10.1101/2024.05.20.595049.

本文引用的文献

2
Hyperactivity of indirect pathway-projecting spiny projection neurons promotes compulsive behavior.
Nat Commun. 2024 May 24;15(1):4434. doi: 10.1038/s41467-024-48331-z.
3
Postmortem neuropathology in early Huntington disease.
J Neuropathol Exp Neurol. 2024 Apr 19;83(5):294-306. doi: 10.1093/jnen/nlae022.
4
Dopamine transients follow a striatal gradient of reward time horizons.
Nat Neurosci. 2024 Apr;27(4):737-746. doi: 10.1038/s41593-023-01566-3. Epub 2024 Feb 6.
5
A non-canonical striatopallidal Go pathway that supports motor control.
Nat Commun. 2023 Oct 23;14(1):6712. doi: 10.1038/s41467-023-42288-1.
6
Mind the GAP: RASA2 and RASA3 GTPase-activating proteins as gatekeepers of T cell activation and adhesion.
Trends Immunol. 2023 Nov;44(11):917-931. doi: 10.1016/j.it.2023.09.002. Epub 2023 Oct 18.
7
Unique functional responses differentially map onto genetic subtypes of dopamine neurons.
Nat Neurosci. 2023 Oct;26(10):1762-1774. doi: 10.1038/s41593-023-01401-9. Epub 2023 Aug 3.
8
Cell and circuit complexity of the external globus pallidus.
Nat Neurosci. 2023 Jul;26(7):1147-1159. doi: 10.1038/s41593-023-01368-7. Epub 2023 Jun 19.
9
Striosomes and Matrisomes: Scaffolds for Dynamic Coupling of Volition and Action.
Annu Rev Neurosci. 2023 Jul 10;46:359-380. doi: 10.1146/annurev-neuro-121522-025740. Epub 2023 Apr 17.
10
Striatal μ-opioid receptor activation triggers direct-pathway GABAergic plasticity and induces negative affect.
Cell Rep. 2023 Feb 28;42(2):112089. doi: 10.1016/j.celrep.2023.112089. Epub 2023 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验