Beck Dirk W, Heaton Cory N, Davila Luis D, Rakocevic Lara I, Drammis Sabrina M, Tyulmankov Danil, Vara Paulina, Giri Atanu, Umashankar Beck Shreeya, Zhang Qingyang, Pokojovy Michael, Negishi Kenichiro, Batson Serina A, Salcido Alexis A, Reyes Neftali F, Macias Andrea Y, Ibanez-Alcala Raquel J, Hossain Safa B, Waller Graham L, Moschak Travis M, Goosens Ki A, Friedman Alexander
Computational Science Program, University of Texas at El Paso, EI Paso, TX, USA.
Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.
Res Sq. 2024 Dec 3:rs.3.rs-5499511. doi: 10.21203/rs.3.rs-5499511/v1.
Optimal decision-making requires consideration of internal and external contexts. Biased decision-making is a transdiagnostic symptom of neuropsychiatric disorders. We created a computational model demonstrating how the striosome compartment of the striatum constructs a context-dependent mathematical space for decision-making computations, and how the matrix compartment uses this space to define action value. The model explains multiple experimental results and unifies other theories like reward prediction error, roles of the direct versus indirect pathways, and roles of the striosome versus matrix, under one framework. We also found, through new analyses, that striosome and matrix neurons increase their synchrony during difficult tasks, caused by a necessary increase in dimensionality of the space. The model makes testable predictions about individual differences in disorder susceptibility, decision-making symptoms shared among neuropsychiatric disorders, and differences in neuropsychiatric disorder symptom presentation. The model provides new evidence for the central role that striosomes play in neuroeconomic and disorder-affected decision-making.
最佳决策需要考虑内部和外部环境。有偏差的决策是神经精神疾病的一种跨诊断症状。我们创建了一个计算模型,展示了纹状体的纹状小体部分如何构建一个依赖于环境的数学空间用于决策计算,以及基质部分如何利用这个空间来定义动作价值。该模型解释了多个实验结果,并在一个框架下统一了其他理论,如奖励预测误差、直接与间接通路的作用以及纹状小体与基质的作用。我们还通过新的分析发现,在困难任务期间,纹状小体和基质神经元会增加它们的同步性,这是由空间维度的必要增加所导致的。该模型对疾病易感性的个体差异、神经精神疾病共有的决策症状以及神经精神疾病症状表现的差异做出了可检验的预测。该模型为纹状小体在神经经济学和受疾病影响的决策中所起的核心作用提供了新证据。