Suppr超能文献

用于对光子计数 CT 虚拟成像试验进行电荷共享和脉冲堆积建模的框架。

A framework to model charge sharing and pulse pileup for virtual imaging trials of photon-counting CT.

机构信息

Carl E. Ravin Advanced Imaging Laboratories and Center for Virtual Imaging Trials, Duke University, Durham, NC 27705, United States of America.

Department of Radiology, Duke University Medical Center, Durham, NC 27705, United States of America.

出版信息

Phys Med Biol. 2024 Nov 6;69(22). doi: 10.1088/1361-6560/ad8b0a.

Abstract

This study describes the development, validation, and integration of a detector response model that accounts for the combined effects of x-ray crosstalk, charge sharing, and pulse pileup in photon-counting detectors.The x-ray photon transport was simulated using Geant4, followed by analytical charge sharing simulation in MATLAB. The analytical simulation models charge clouds with Gaussian-distributed charge densities, which are projected on a 3×3 pixel neighborhood of interaction location to compute detected counts. For pulse pileup, a prior analytical method for redistribution of energy-binned counts was implemented for delta pulses. The x-ray photon transport and charge sharing components were validated using experimental data acquired on the CdTe-based Pixirad-1/Pixie-III detector using monoenergetic beams at 26, 33, 37, and 50 keV. The pulse pileup implementation was verified with a comparable Monte Carlo simulation. The model output without pulse pileup was used to generate spatio-energetic response matrices for efficient simulation of scanner-specific photon-counting CT (PCCT) images with DukeSim, with pulse pileup modeled as a post-processing step on simulated projections. For analysis, images for the Gammex multi-energy phantom and the XCAT chest phantom were simulated at 120 kV, both with and without pulse pileup for a range of doses (27-1344 mAs). The XCAT images were evaluated qualitatively at 120 mAs, while images for the Gammex phantom were evaluated quantitatively for all doses using measurements of attenuation coefficients and Calcium concentrations.Reasonable agreement was observed between simulated and experimental spectra with Mean Absolute Percentage Error Values (MAPE) between 10%and 31%across all incident energies and detector modes. The increased pulse pileup from increased dose affected attenuation coefficients and calcium concentrations, with an effect on calcium quantification as high as MAPE of 28%.The presented approach demonstrates the viability of the model for enabling VITs to assess and optimize the clinical performance of PCCT.

摘要

本研究描述了一种探测器响应模型的开发、验证和集成,该模型考虑了 X 射线串扰、电荷共享和光子计数探测器中脉冲堆积的综合影响。使用 Geant4 模拟 X 射线光子传输,然后在 MATLAB 中进行分析电荷共享模拟。分析模拟模型用高斯分布电荷密度表示电荷云,将其投影到相互作用位置的 3×3 像素邻域,以计算检测到的计数。对于脉冲堆积,对于 delta 脉冲,实现了先前用于能量分-bin 计数再分配的分析方法。使用基于 CdTe 的 Pixirad-1/Pixie-III 探测器在 26、33、37 和 50keV 处使用单能束获取的实验数据验证了 X 射线光子传输和电荷共享组件。使用可比的蒙特卡罗模拟验证了脉冲堆积实现。没有脉冲堆积的模型输出用于生成 DukeSim 中用于高效模拟特定于扫描仪的光子计数 CT(PCCT)图像的空间能量响应矩阵,将脉冲堆积建模为模拟投影的后处理步骤。对于分析,在 120kV 下模拟了 Gammex 多能量体模和 XCAT 胸部体模的图像,包括有无脉冲堆积的情况,剂量范围为 27-1344mAs。在 120mAs 下对 XCAT 图像进行了定性评估,而对于所有剂量,使用衰减系数和钙浓度的测量值对 Gammex 体模图像进行了定量评估。模拟和实验谱之间观察到了合理的一致性,所有入射能量和探测器模式下的平均绝对百分比误差值(MAPE)均在 10%至 31%之间。随着剂量的增加,脉冲堆积的增加会影响衰减系数和钙浓度,对钙定量的影响高达 MAPE 的 28%。所提出的方法证明了该模型对于 VIT 评估和优化 PCCT 的临床性能的可行性。

相似文献

本文引用的文献

5
Virtual clinical trials in medical imaging: a review.医学成像中的虚拟临床试验:综述
J Med Imaging (Bellingham). 2020 Jul;7(4):042805. doi: 10.1117/1.JMI.7.4.042805. Epub 2020 Apr 11.
7
Framework for Photon Counting Quantitative Material Decomposition.光子计数定量物质分解框架。
IEEE Trans Med Imaging. 2020 Jan;39(1):35-47. doi: 10.1109/TMI.2019.2914370. Epub 2019 May 27.
9
Photon-counting CT: Technical Principles and Clinical Prospects.光子计数 CT:技术原理与临床前景。
Radiology. 2018 Nov;289(2):293-312. doi: 10.1148/radiol.2018172656. Epub 2018 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验