Suppr超能文献

用于光子计数计算机断层扫描的特定扫描仪模拟框架的开发。

Development of a scanner-specific simulation framework for photon-counting computed tomography.

作者信息

Abadi Ehsan, Harrawood Brian, Rajagopal Jayasai R, Sharma Shobhit, Kapadia Anuj, Segars William Paul, Stierstorfer Karl, Sedlmair Martin, Jones Elizabeth, Samei Ehsan

机构信息

Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University, Durham, NC, United States of America.

出版信息

Biomed Phys Eng Express. 2019 Aug;5(5). doi: 10.1088/2057-1976/ab37e9. Epub 2019 Aug 9.

Abstract

The aim of this study was to develop and validate a simulation platform that generates photon-counting CT images of voxelized phantoms with detailed modeling of manufacturer-specific components including the geometry and physics of the x-ray source, source filtrations, anti-scatter grids, and photon-counting detectors. The simulator generates projection images accounting for both primary and scattered photons using a computational phantom, scanner configuration, and imaging settings. Beam hardening artifacts are corrected using a spectrum and threshold dependent water correction algorithm. Physical and computational versions of a clinical phantom (ACR) were used for validation purposes. The physical phantom was imaged using a research prototype photon-counting CT (Siemens Healthcare) with standard (macro) mode, at four dose levels and with two energy thresholds. The computational phantom was imaged with the developed simulator with the same parameters and settings used in the actual acquisition. Images from both the real and simulated acquisitions were reconstructed using a reconstruction software (FreeCT). Primary image quality metrics such as noise magnitude, noise ratio, noise correlation coefficients, noise power spectrum, CT number, in-plane modulation transfer function, and slice sensitivity profiles were extracted from both real and simulated data and compared. The simulator was further evaluated for imaging contrast materials (bismuth, iodine, and gadolinium) at three concentration levels and six energy thresholds. Qualitatively, the simulated images showed similar appearance to the real ones. Quantitatively, the average relative error in image quality measurements were all less than 4% across all the measurements. The developed simulator will enable systematic optimization and evaluation of the emerging photon-counting computed tomography technology.

摘要

本研究的目的是开发并验证一个模拟平台,该平台能生成体素化体模的光子计数CT图像,并对包括X射线源的几何结构和物理特性、源过滤、防散射格栅以及光子计数探测器在内的特定制造商组件进行详细建模。该模拟器使用计算体模、扫描仪配置和成像设置生成同时考虑初级光子和散射光子的投影图像。使用基于光谱和阈值的水校正算法校正束硬化伪影。临床体模(ACR)的物理版本和计算版本用于验证目的。使用研究原型光子计数CT(西门子医疗)以标准(宏观)模式、在四个剂量水平和两个能量阈值下对物理体模进行成像。使用开发的模拟器对计算体模进行成像,采用与实际采集相同的参数和设置。使用重建软件(FreeCT)对真实采集和模拟采集的图像进行重建。从真实数据和模拟数据中提取诸如噪声幅度、噪声比、噪声相关系数、噪声功率谱、CT值、面内调制传递函数和切片灵敏度分布等主要图像质量指标并进行比较。该模拟器还针对三种浓度水平和六个能量阈值的造影剂(铋、碘和钆)进行了评估。定性地说,模拟图像与真实图像外观相似。定量地说,所有测量中图像质量测量的平均相对误差均小于4%。所开发的模拟器将能够对新兴的光子计数计算机断层扫描技术进行系统优化和评估。

相似文献

1
Development of a scanner-specific simulation framework for photon-counting computed tomography.
Biomed Phys Eng Express. 2019 Aug;5(5). doi: 10.1088/2057-1976/ab37e9. Epub 2019 Aug 9.
2
Development and Clinical Applications of a Virtual Imaging Framework for Optimizing Photon-counting CT.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12031. doi: 10.1117/12.2612079. Epub 2022 Apr 4.
3
Addressing CT metal artifacts using photon-counting detectors and one-step spectral CT image reconstruction.
Med Phys. 2022 May;49(5):3021-3040. doi: 10.1002/mp.15621. Epub 2022 Apr 5.
4
Development and validation of a noise insertion algorithm for photon-counting-detector CT.
Med Phys. 2024 Sep;51(9):5943-5953. doi: 10.1002/mp.17263. Epub 2024 Jun 23.
5
6
Exploration of the pulse pileup effects in a clinical CdTe-based photon-counting computed tomography.
Med Phys. 2023 Nov;50(11):6693-6703. doi: 10.1002/mp.16671. Epub 2023 Aug 21.
8
A neural network-based method for spectral distortion correction in photon counting x-ray CT.
Phys Med Biol. 2016 Aug 21;61(16):6132-53. doi: 10.1088/0031-9155/61/16/6132. Epub 2016 Jul 29.
9
Task-based validation and application of a scanner-specific CT simulator using an anthropomorphic phantom.
Med Phys. 2022 Dec;49(12):7447-7457. doi: 10.1002/mp.15967. Epub 2022 Nov 12.

引用本文的文献

2
In silico modeling of a clinical photon-counting CT system: Verification and validation.
Med Phys. 2025 Jun;52(6):3840-3853. doi: 10.1002/mp.17886. Epub 2025 May 13.
3
The potential of photon-counting CT for the improved precision of lung nodule radiomics.
Phys Med Biol. 2025 Jan 27;70(3). doi: 10.1088/1361-6560/adaad2.
5
AAPM Truth-based CT (TrueCT) reconstruction grand challenge.
Med Phys. 2025 Apr;52(4):1978-1990. doi: 10.1002/mp.17619. Epub 2025 Jan 14.
6
Impact of image formation factors on material discrimination in spectral CT.
Phys Med Biol. 2024 Dec 24;70(1). doi: 10.1088/1361-6560/ad9daf.
9
Toward widespread use of virtual trials in medical imaging innovation and regulatory science.
Med Phys. 2024 Dec;51(12):9394-9404. doi: 10.1002/mp.17442. Epub 2024 Oct 6.
10
Development of a separability index for task specific characterization of spectral computed tomography.
Phys Med. 2024 Jun;122:103382. doi: 10.1016/j.ejmp.2024.103382. Epub 2024 May 30.

本文引用的文献

1
Modeling "Textured" Bones in Virtual Human Phantoms.
IEEE Trans Radiat Plasma Med Sci. 2019 Jan;3(1):47-53. doi: 10.1109/TRPMS.2018.2828083. Epub 2018 Apr 19.
2
DukeSim: A Realistic, Rapid, and Scanner-Specific Simulation Framework in Computed Tomography.
IEEE Trans Med Imaging. 2019 Jun;38(6):1457-1465. doi: 10.1109/TMI.2018.2886530. Epub 2018 Dec 12.
3
Photon-counting CT: Technical Principles and Clinical Prospects.
Radiology. 2018 Nov;289(2):293-312. doi: 10.1148/radiol.2018172656. Epub 2018 Sep 4.
4
Spatio-energetic cross-talk in photon counting detectors: N × N binning and sub-pixel masking.
Med Phys. 2018 Nov;45(11):4822-4843. doi: 10.1002/mp.13146. Epub 2018 Sep 27.
5
Dose Efficiency of Quarter-Millimeter Photon-Counting Computed Tomography: First-in-Human Results.
Invest Radiol. 2018 Jun;53(6):365-372. doi: 10.1097/RLI.0000000000000463.
7
Modeling Lung Architecture in the XCAT Series of Phantoms: Physiologically Based Airways, Arteries and Veins.
IEEE Trans Med Imaging. 2018 Mar;37(3):693-702. doi: 10.1109/TMI.2017.2769640.
8
Modeling the frequency-dependent detective quantum efficiency of photon-counting x-ray detectors.
Med Phys. 2018 Jan;45(1):156-166. doi: 10.1002/mp.12667. Epub 2017 Dec 5.
9
Photon-Counting CT of the Brain: In Vivo Human Results and Image-Quality Assessment.
AJNR Am J Neuroradiol. 2017 Dec;38(12):2257-2263. doi: 10.3174/ajnr.A5402. Epub 2017 Oct 5.
10
Feasibility of Dose-reduced Chest CT with Photon-counting Detectors: Initial Results in Humans.
Radiology. 2017 Dec;285(3):980-989. doi: 10.1148/radiol.2017162587. Epub 2017 Jul 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验