School of Mathematics and Statistics, Lanzhou University, Lanzhou, 730000, Gansu, China.
J Math Biol. 2024 Oct 24;89(5):54. doi: 10.1007/s00285-024-02153-1.
This paper is concerned with spatiotemporal dynamics of a fractional diffusive susceptible-infected-susceptible (SIS) epidemic model with mass action infection mechanism. Concretely, we first focus on the existence and stability of the disease-free and endemic equilibria. Then, we give the asymptotic profiles of the endemic equilibrium on small and large diffusion rates, which can reveal the impact of dispersal rates and fractional powers simultaneously. It is worth noting that we have some counter-intuitive findings: controlling the flow of infected individuals will not eradicate the disease, but restricting the movement of susceptible individuals will make the disease disappear.
这篇论文研究了具有质量作用感染机制的分数阶扩散易感-感染-易感染(SIS)传染病模型的时空动力学。具体来说,我们首先关注无病平衡点和地方病平衡点的存在性和稳定性。然后,我们给出了小扩散率和大扩散率下地方病平衡点的渐近分布,这可以同时揭示扩散率和分数幂的影响。值得注意的是,我们有一些违反直觉的发现:控制感染个体的流动并不能消灭疾病,但限制易感个体的流动会使疾病消失。