Barreca Marco, Dugo Matteo, Galbardi Barbara, Győrffy Balázs, Valagussa Pinuccia, Besozzi Daniela, Viale Giuseppe, Bianchini Giampaolo, Gianni Luca, Callari Maurizio
Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
Fondazione Michelangelo, Milan, Italy.
NPJ Precis Oncol. 2024 Oct 24;8(1):242. doi: 10.1038/s41698-024-00730-7.
The prevalence of malignant cells in clinical specimens, or tumour purity, is affected by both intrinsic biological factors and extrinsic sampling bias. Molecular characterization of large clinical cohorts is typically performed on bulk samples; data analysis and interpretation can be biased by tumour purity variability. Transcription-based strategies to estimate tumour purity have been proposed, but no breast cancer specific method is available yet. We interrogated over 6000 expression profiles from 10 breast cancer datasets to develop and validate a 9-gene Breast Cancer Purity Score (BCPS). BCPS outperformed existing methods for estimating tumour content. Adjusting transcriptomic profiles using the BCPS reduces sampling bias and aids data interpretation. BCPS-estimated tumour purity improved prognostication in luminal breast cancer, correlated with pathologic complete response in on-treatment biopsies from triple-negative breast cancer patients undergoing neoadjuvant treatment and effectively stratified the risk of relapse in HER2+ residual disease post-neoadjuvant treatment.
临床标本中恶性细胞的流行率,即肿瘤纯度,受内在生物学因素和外在采样偏差的影响。大型临床队列的分子特征分析通常在批量样本上进行;数据分析和解释可能会因肿瘤纯度的变异性而产生偏差。已经提出了基于转录的策略来估计肿瘤纯度,但尚无乳腺癌特异性方法。我们对来自10个乳腺癌数据集的6000多个表达谱进行了研究,以开发和验证一种9基因乳腺癌纯度评分(BCPS)。BCPS在估计肿瘤含量方面优于现有方法。使用BCPS调整转录组谱可减少采样偏差并有助于数据解释。BCPS估计的肿瘤纯度改善了管腔型乳腺癌的预后,与接受新辅助治疗的三阴性乳腺癌患者治疗期间活检的病理完全缓解相关,并有效分层了HER2 +新辅助治疗后残留疾病的复发风险。