Suppr超能文献

功能分位数主成分分析

Functional quantile principal component analysis.

作者信息

Méndez-Civieta Álvaro, Wei Ying, Diaz Keith M, Goldsmith Jeff

机构信息

Department of Biostatistics, Columbia University, 722W 178 St, New York, NY 10032, United States.

uc3m-Santander Big Data Institute, University Carlos III of Madrid, C. Madrid, 126, Madrid 28903, Spain.

出版信息

Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxae040.

Abstract

This paper introduces functional quantile principal component analysis (FQPCA), a dimensionality reduction technique that extends the concept of functional principal components analysis (FPCA) to the examination of participant-specific quantiles curves. Our approach borrows strength across participants to estimate patterns in quantiles, and uses participant-level data to estimate loadings on those patterns. As a result, FQPCA is able to capture shifts in the scale and distribution of data that affect participant-level quantile curves, and is also a robust methodology suitable for dealing with outliers, heteroscedastic data or skewed data. The need for such methodology is exemplified by physical activity data collected using wearable devices. Participants often differ in the timing and intensity of physical activity behaviors, and capturing information beyond the participant-level expected value curves produced by FPCA is necessary for a robust quantification of diurnal patterns of activity. We illustrate our methods using accelerometer data from the National Health and Nutrition Examination Survey, and produce participant-level 10%, 50%, and 90% quantile curves over 24 h of activity. The proposed methodology is supported by simulation results, and is available as an R package.

摘要

本文介绍了功能分位数主成分分析(FQPCA),这是一种降维技术,它将功能主成分分析(FPCA)的概念扩展到对参与者特定分位数曲线的检验。我们的方法利用参与者之间的优势来估计分位数中的模式,并使用参与者层面的数据来估计这些模式上的载荷。因此,FQPCA能够捕捉影响参与者层面分位数曲线的数据尺度和分布的变化,并且也是一种适用于处理异常值、异方差数据或偏态数据的稳健方法。使用可穿戴设备收集的身体活动数据就体现了对这种方法的需求。参与者在身体活动行为的时间和强度上往往存在差异,对于活动昼夜模式的稳健量化而言,捕捉FPCA产生的参与者层面期望值曲线之外的信息是必要的。我们使用来自国家健康与营养检查调查的加速度计数据来说明我们的方法,并生成24小时活动期间参与者层面的10%、50%和90%分位数曲线。所提出的方法得到了模拟结果的支持,并且可以作为一个R包获取。

相似文献

1
Functional quantile principal component analysis.功能分位数主成分分析
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxae040.
3
Eliciting adverse effects data from participants in clinical trials.从临床试验参与者中获取不良反应数据。
Cochrane Database Syst Rev. 2018 Jan 16;1(1):MR000039. doi: 10.1002/14651858.MR000039.pub2.
8
Early palliative care for adults with advanced cancer.晚期癌症成年患者的早期姑息治疗。
Cochrane Database Syst Rev. 2017 Jun 12;6(6):CD011129. doi: 10.1002/14651858.CD011129.pub2.

本文引用的文献

3
Smoothed Quantile Regression with Large-Scale Inference.具有大规模推断的平滑分位数回归
J Econom. 2023 Feb;232(2):367-388. doi: 10.1016/j.jeconom.2021.07.010. Epub 2021 Aug 24.
7
Fast Univariate Inference for Longitudinal Functional Models.纵向功能模型的快速单变量推断
J Comput Graph Stat. 2022;31(1):219-230. doi: 10.1080/10618600.2021.1950006. Epub 2021 Aug 4.
8
Quantile Function on Scalar Regression Analysis for Distributional Data.分布数据标量回归分析中的分位数函数
J Am Stat Assoc. 2020;115(529):90-106. doi: 10.1080/01621459.2019.1609969. Epub 2019 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验