Suppr超能文献

因果图中的测量误差和信息偏倚:映射流行病学概念和图形结构。

Measurement error and information bias in causal diagrams: mapping epidemiological concepts and graphical structures.

机构信息

School of Public Health, Oregon Health & Science University-Portland State University, Portland, OR, USA.

VA RR&D National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, Portland, OR, USA.

出版信息

Int J Epidemiol. 2024 Oct 13;53(6). doi: 10.1093/ije/dyae141.

Abstract

Measurement error and information bias are ubiquitous in epidemiology, yet directed acyclic graphs (DAGs) are infrequently used to represent them, in contrast with confounding and selection bias. This represents a missed opportunity to leverage the full utility of DAGs to depict associations between the variables we actually analyse in practice: empirically measured variables, which are necessarily measured with error. In this article, we focus on applying causal diagrams to depict the data-generating mechanisms that give rise to the data we analyse, including measurement error. We begin by considering empirical data considerations using a general example, and then build up to a specific worked example from the clinical epidemiology of hearing health. Throughout, our goal is to highlight both the challenges and the benefits of using DAGs to depict measurement error. In addition to the application of DAGs to conceptual causal questions (which pertain to unmeasured constructs free from measurement error), which is common, we highlight the advantages associated with applying DAGs to also include empirically measured variables and-potentially-information bias. We also highlight the implications implied by this use of DAGs, particularly regarding the unblocked backdoor path causal structure. Ultimately, we seek to help increase the clarity with which epidemiologists can map traditional epidemiological concepts (such as information bias and confounding) onto causal graphical structures.

摘要

在流行病学中,测量误差和信息偏倚是普遍存在的,但与混杂和选择偏倚相比,有向无环图(DAG)很少被用来表示它们。这代表着错失了一个利用 DAG 充分发挥其功能的机会,无法描绘我们在实践中实际分析的变量之间的关系:即经验测量变量,这些变量必然存在测量误差。在本文中,我们专注于应用因果图来描绘产生我们分析的数据的生成机制,包括测量误差。我们首先通过一个通用示例考虑经验数据的考虑因素,然后逐步构建听力健康临床流行病学的具体示例。贯穿始终,我们的目标是既要突出使用 DAG 来描述测量误差的挑战,也要突出其优势。除了 DAG 常见的应用于概念性因果问题(与不受测量误差影响的未测量结构有关)之外,我们还强调了将 DAG 应用于包括经验测量变量和潜在信息偏倚的优势。我们还强调了这种 DAG 使用所带来的影响,特别是关于未阻塞后门路径因果结构的影响。最终,我们旨在帮助提高流行病学家将传统流行病学概念(如信息偏倚和混杂)映射到因果图形结构的清晰度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验