Institute of Medical Technology, Hamburg University of Technology, Hamburg, Germany.
Int J Comput Assist Radiol Surg. 2020 Oct;15(10):1699-1702. doi: 10.1007/s11548-020-02224-w. Epub 2020 Jul 22.
Needle placement is a challenging problem for applications such as biopsy or brachytherapy. Tip force sensing can provide valuable feedback for needle navigation inside the tissue. For this purpose, fiber-optical sensors can be directly integrated into the needle tip. Optical coherence tomography (OCT) can be used to image tissue. Here, we study how to calibrate OCT to sense forces, e.g., during robotic needle placement.
We investigate whether using raw spectral OCT data without a typical image reconstruction can improve a deep learning-based calibration between optical signal and forces. For this purpose, we consider three different needles with a new, more robust design which are calibrated using convolutional neural networks (CNNs). We compare training the CNNs with the raw OCT signal and the reconstructed depth profiles.
We find that using raw data as an input for the largest CNN model outperforms the use of reconstructed data with a mean absolute error of 5.81 mN compared to 8.04 mN.
We find that deep learning with raw spectral OCT data can improve learning for the task of force estimation. Our needle design and calibration approach constitute a very accurate fiber-optical sensor for measuring forces at the needle tip.
对于活检或近距离治疗等应用,针尖的定位是一个具有挑战性的问题。尖端力感测可以为组织内的针尖导航提供有价值的反馈。为此,可以将光纤传感器直接集成到针尖中。光学相干断层扫描(OCT)可用于对组织成像。在这里,我们研究如何校准 OCT 以感知力,例如在机器人引导的针放置过程中。
我们研究了在不进行典型图像重建的情况下使用原始光谱 OCT 数据是否可以改善基于深度学习的光学信号与力之间的校准。为此,我们考虑了三种不同的针,它们采用了新的、更稳健的设计,并使用卷积神经网络(CNN)进行了校准。我们比较了使用原始 OCT 信号和重建的深度轮廓训练 CNN 的情况。
我们发现,使用原始数据作为最大 CNN 模型的输入,其性能优于使用重建数据的情况,其平均绝对误差为 5.81 mN,而使用重建数据的平均绝对误差为 8.04 mN。
我们发现,使用原始光谱 OCT 数据进行深度学习可以提高力估计任务的学习能力。我们的针设计和校准方法构成了一种非常精确的光纤传感器,可以测量针尖处的力。