文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于无人机影像的水稻育种材料穗数和穗型表型分析

Phenotyping of Panicle Number and Shape in Rice Breeding Materials Based on Unmanned Aerial Vehicle Imagery.

作者信息

Lu Xuqi, Shen Yutao, Xie Jiayang, Yang Xin, Shu Qingyao, Chen Song, Shen Zhihui, Cen Haiyan

机构信息

College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.

Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China.

出版信息

Plant Phenomics. 2024 Oct 24;6:0265. doi: 10.34133/plantphenomics.0265. eCollection 2024.


DOI:10.34133/plantphenomics.0265
PMID:39449974
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11499587/
Abstract

The number of panicles per unit area (PNpA) is one of the key factors contributing to the grain yield of rice crops. Accurate PNpA quantification is vital for breeding high-yield rice cultivars. Previous studies were based on proximal sensing with fixed observation platforms or unmanned aerial vehicles (UAVs). The near-canopy images produced in these studies suffer from inefficiency and complex image processing pipelines that require manual image cropping and annotation. This study aims to develop an automated, high-throughput UAV imagery-based approach for field plot segmentation and panicle number quantification, along with a novel classification method for different panicle types, enhancing PNpA quantification at the plot level. RGB images of the rice canopy were efficiently captured at an altitude of 15 m, followed by image stitching and plot boundary recognition via a mask region-based convolutional neural network (Mask R-CNN). The images were then segmented into plot-scale subgraphs, which were categorized into 3 growth stages. The panicle vision transformer (Panicle-ViT), which integrates a multipath vision transformer and replaces the Mask R-CNN backbone, accurately detects panicles. Additionally, the Res2Net50 architecture classified panicle types with 4 angles of 0°, 15°, 45°, and 90°. The results confirm that the performance of Plot-Seg is comparable to that of manual segmentation. Panicle-ViT outperforms the traditional Mask R-CNN across all the datasets, with the average precision at 50% intersection over union (AP) improved by 3.5% to 20.5%. The PNpA quantification for the full dataset achieved superior performance, with a coefficient of determination ( ) of 0.73 and a root mean square error (RMSE) of 28.3, and the overall panicle classification accuracy reached 94.8%. The proposed approach enhances operational efficiency and automates the process from plot cropping to PNpA prediction, which is promising for accelerating the selection of desired traits in rice breeding.

摘要

单位面积穗数(PNpA)是影响水稻产量的关键因素之一。准确量化PNpA对于培育高产水稻品种至关重要。以往的研究基于使用固定观测平台或无人机(UAV)的近距离传感。这些研究中生成的近冠层图像存在效率低下和图像处理流程复杂的问题,需要人工进行图像裁剪和标注。本研究旨在开发一种基于无人机图像的自动化、高通量方法,用于田间小区分割和穗数量化,以及一种针对不同穗型的新型分类方法,以提高田间小区水平的PNpA量化。在15米的高度高效采集水稻冠层的RGB图像,随后通过基于掩膜区域的卷积神经网络(Mask R-CNN)进行图像拼接和小区边界识别。然后将图像分割为小区尺度的子图,并分为3个生长阶段。集成多路径视觉变换器并取代Mask R-CNN主干的穗视觉变换器(Panicle-ViT)能够准确检测穗。此外,Res2Net50架构以0°、15°、45°和90°四个角度对穗型进行分类。结果证实,Plot-Seg的性能与人工分割相当。Panicle-ViT在所有数据集中均优于传统的Mask R-CNN,平均精度在50%交并比(AP)下提高了3.5%至20.5%。完整数据集的PNpA量化取得了优异的性能,决定系数( )为0.73,均方根误差(RMSE)为28.3,穗型总体分类准确率达到94.8%。所提出的方法提高了操作效率,实现了从小区裁剪到PNpA预测的自动化过程,有望加速水稻育种中所需性状的选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2548/11499587/1f6f0e4ea2e6/plantphenomics.0265.fig.012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2548/11499587/2ad9237408fb/plantphenomics.0265.fig.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2548/11499587/185a16cbfa5b/plantphenomics.0265.fig.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2548/11499587/3fcae85723ac/plantphenomics.0265.fig.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2548/11499587/6d3cc032526b/plantphenomics.0265.fig.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2548/11499587/0c51a0bcac3e/plantphenomics.0265.fig.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2548/11499587/78e5e4768c89/plantphenomics.0265.fig.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2548/11499587/9c3c666e8eb5/plantphenomics.0265.fig.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2548/11499587/322f5f61ba26/plantphenomics.0265.fig.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2548/11499587/3f22bcfa1d06/plantphenomics.0265.fig.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2548/11499587/3023d9ffc459/plantphenomics.0265.fig.010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2548/11499587/3d350f3d514e/plantphenomics.0265.fig.011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2548/11499587/1f6f0e4ea2e6/plantphenomics.0265.fig.012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2548/11499587/2ad9237408fb/plantphenomics.0265.fig.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2548/11499587/185a16cbfa5b/plantphenomics.0265.fig.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2548/11499587/3fcae85723ac/plantphenomics.0265.fig.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2548/11499587/6d3cc032526b/plantphenomics.0265.fig.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2548/11499587/0c51a0bcac3e/plantphenomics.0265.fig.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2548/11499587/78e5e4768c89/plantphenomics.0265.fig.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2548/11499587/9c3c666e8eb5/plantphenomics.0265.fig.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2548/11499587/322f5f61ba26/plantphenomics.0265.fig.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2548/11499587/3f22bcfa1d06/plantphenomics.0265.fig.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2548/11499587/3023d9ffc459/plantphenomics.0265.fig.010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2548/11499587/3d350f3d514e/plantphenomics.0265.fig.011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2548/11499587/1f6f0e4ea2e6/plantphenomics.0265.fig.012.jpg

相似文献

[1]
Phenotyping of Panicle Number and Shape in Rice Breeding Materials Based on Unmanned Aerial Vehicle Imagery.

Plant Phenomics. 2024-10-24

[2]
Sorghum Panicle Detection and Counting Using Unmanned Aerial System Images and Deep Learning.

Front Plant Sci. 2020-9-2

[3]
Panicle-SEG: a robust image segmentation method for rice panicles in the field based on deep learning and superpixel optimization.

Plant Methods. 2017-11-28

[4]
Automated Counting of Rice Panicle by Applying Deep Learning Model to Images from Unmanned Aerial Vehicle Platform.

Sensors (Basel). 2019-7-13

[5]
Leaf to panicle ratio (LPR): a new physiological trait indicative of source and sink relation in japonica rice based on deep learning.

Plant Methods. 2020-8-26

[6]
Panicle Ratio Network: streamlining rice panicle measurement by deep learning with ultra-high-definition aerial images in the field.

J Exp Bot. 2022-11-2

[7]
Universal detection of curved rice panicles in complex environments using aerial images and improved YOLOv4 model.

Front Plant Sci. 2022-11-7

[8]
Panicle-Cloud: An Open and AI-Powered Cloud Computing Platform for Quantifying Rice Panicles from Drone-Collected Imagery to Enable the Classification of Yield Production in Rice.

Plant Phenomics. 2023-10-16

[9]
High-throughput and separating-free phenotyping method for on-panicle rice grains based on deep learning.

Front Plant Sci. 2023-9-18

[10]
High-throughput UAV-based rice panicle detection and genetic mapping of heading-date-related traits.

Front Plant Sci. 2024-3-6

引用本文的文献

[1]
Integrated diagnostics and time series sensitivity assessment for growth monitoring of a medicinal plant ( Fisch.) based on unmanned aerial vehicle multispectral sensors.

Front Plant Sci. 2025-8-19

[2]
Deep learning-based semantic segmentation for rice yield estimation by analyzing the dynamic change of panicle coverage.

Front Plant Sci. 2025-8-14

本文引用的文献

[1]
A High-Throughput Method for Accurate Extraction of Intact Rice Panicle Traits.

Plant Phenomics. 2024-8-1

[2]
Panicle-Cloud: An Open and AI-Powered Cloud Computing Platform for Quantifying Rice Panicles from Drone-Collected Imagery to Enable the Classification of Yield Production in Rice.

Plant Phenomics. 2023-10-16

[3]
Universal detection of curved rice panicles in complex environments using aerial images and improved YOLOv4 model.

Front Plant Sci. 2022-11-7

[4]
AirMeasurer: open-source software to quantify static and dynamic traits derived from multiseason aerial phenotyping to empower genetic mapping studies in rice.

New Phytol. 2022-11

[5]
A Survey on Vision Transformer.

IEEE Trans Pattern Anal Mach Intell. 2023-1

[6]
Panicle-3D: Efficient Phenotyping Tool for Precise Semantic Segmentation of Rice Panicle Point Cloud.

Plant Phenomics. 2021-12-23

[7]
Limiting factors for panicle photosynthesis at the anthesis and grain filling stages in rice (Oryza sativa L.).

Plant J. 2022-1

[8]
Estimates of Maize Plant Density from UAV RGB Images Using Faster-RCNN Detection Model: Impact of the Spatial Resolution.

Plant Phenomics. 2021-8-21

[9]
Maintaining higher leaf photosynthesis after heading stage could promote biomass accumulation in rice.

Sci Rep. 2021-4-7

[10]
Genetic gain for rice yield in rainfed environments in India.

Field Crops Res. 2021-1-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索