Suppr超能文献

基于深度学习的语义分割技术,通过分析稻穗覆盖度的动态变化来估算水稻产量。

Deep learning-based semantic segmentation for rice yield estimation by analyzing the dynamic change of panicle coverage.

作者信息

Bak Hyeok-Jin, Kim Eun-Ji, Lee Ji-Hyeon, Chang Sungyul, Kwon Dongwon, Im Woo-Jin, Hwang Woon-Ha, Chang Jae-Ki, Chung Nam-Jin, Sang Wan-Gyu

机构信息

National Institute of Crop and Food Science, Rural Development Administration, Wanju-gun, Republic of Korea.

National Institute of Horticultural and Herbal Science, Rural Development Administration, Muan-gun, Republic of Korea.

出版信息

Front Plant Sci. 2025 Aug 14;16:1611653. doi: 10.3389/fpls.2025.1611653. eCollection 2025.

Abstract

INTRODUCTION

Rising global populations and climate change necessitate increased agricultural productivity. Most studies on rice panicle detection using imaging technologies rely on single-time-point analyses, failing to capture the dynamic changes in panicle coverage and their effects on yield. Therefore, this study presents a novel temporal framework for rice phenotyping and yield prediction by integrating high-resolution RGB imagery with deep learning-based semantic segmentation.

METHODS

High-resolution RGB images of rice canopies were acquired over two growing seasons. We evaluated five semantic segmentation models (DeepLabv3+, U-Net, PSPNet, FPN, LinkNet) to effectively delineate rice panicles. Time-series panicle coverage data, extracted from the segmented images, were fitted to a piecewise function to model their growth and decline dynamics. This process distilled key predictive parameters: (maximum panicle coverage), (growth rate), (time of maximum growth rate), a (decline rate), and (transition point). These parameters served as predictors in four machine learning regression models (PLSR, RFR, GBR, and XGBR) to estimate yield and its components.

RESULTS

In panicle segmentation, DeepLabv3+ and LinkNet achieved superior performance (mIoU > 0.81). Among the piecewise function parameters, K showed the strongest positive correlation with Yield and Grain Number (GN) ( = 0.87 and = 0.85, respectively), while was strongly negatively correlated with the Filled Grain Ratio (FGR) ( = -0.71). For yield prediction, the RFR and XGBR models demonstrated the highest performance (R= 0.89). SHAP analysis quantified the relative importance of each parameter for predicting yield components.

DISCUSSION

This framework proves to be a powerful tool for quantifying rice developmental dynamics and accurately predicting yield using readily available RGB imagery. It holds significant potential for advancing both precision agriculture and crop breeding efforts.

摘要

引言

全球人口增长和气候变化使得提高农业生产力成为必要。大多数利用成像技术进行水稻穗检测的研究都依赖于单时间点分析,未能捕捉到穗覆盖率的动态变化及其对产量的影响。因此,本研究提出了一种新颖的时间框架,通过将高分辨率RGB图像与基于深度学习的语义分割相结合,用于水稻表型分析和产量预测。

方法

在两个生长季节采集了水稻冠层的高分辨率RGB图像。我们评估了五个语义分割模型(DeepLabv3+、U-Net、PSPNet、FPN、LinkNet),以有效地勾勒出水稻穗。从分割图像中提取的时间序列穗覆盖率数据被拟合到一个分段函数中,以模拟它们的生长和衰退动态。这个过程提炼出关键的预测参数:K(最大穗覆盖率)、r(生长速率)、tₘₐₓ(最大生长速率时间)、a(衰退速率)和tₜ(转变点)。这些参数作为四个机器学习回归模型(PLSR、RFR、GBR和XGBR)中的预测因子,以估计产量及其构成要素。

结果

在穗分割方面,DeepLabv3+和LinkNet表现出卓越的性能(平均交并比>0.81)。在分段函数参数中,K与产量和粒数(GN)显示出最强的正相关(分别为r = 0.87和r = 0.85),而a与结实率(FGR)呈强烈负相关(r = -0.71)。对于产量预测,RFR和XGBR模型表现出最高的性能(R = 0.89)。SHAP分析量化了每个参数对预测产量构成要素的相对重要性。

讨论

该框架被证明是一种强大的工具,可用于量化水稻发育动态,并利用现成的RGB图像准确预测产量。它在推进精准农业和作物育种工作方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8510/12390994/3b6c9ce0a0fc/fpls-16-1611653-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验