Suppr超能文献

用于超级电容器应用的由农业废弃物合成(铁钴镍铜锰)氧尖晶石高熵氧化物及绿色碳

Synthesis of (FeCoNiCuMn)O spinel-high entropy oxide and green carbon from agricultural waste for supercapacitor application.

作者信息

Chandra Mohanty Gobinda, Das Shubhasikha, Verma Anu

机构信息

School of Nano Science and Technology, Indian Institute of Technology, Kharagpur West Bengal 721302 India

School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur West Bengal India.

出版信息

RSC Adv. 2024 Oct 24;14(46):33830-33842. doi: 10.1039/d4ra05204h. eCollection 2024 Oct 23.

Abstract

This article highlights (FeCoNiCuMn)O high-entropy oxide prepared liquid state induction melting techniques for supercapacitor application. Nanostructured high entropy oxides have higher active sites to boost the surface redox process with transition metal cations, such as Fe, Mn, Ni, Co, and Cu, which helps to improve specific power, long-term cyclic stability, and specific capacitance. Melted and ball-milled HEA Nps were annealed to form the high entropy oxide, which uses a positive electrode for supercapacitor application; this results in the highest specific capacitance of 313 F g for a current rate of 5 mV s for the optimized 3 M KOH electrolyte. The biochar prepared through the pyrolysis of rice straw biochar shows a maximum specific capacitance of 232 F g for 5 mV s. The fabricated aqueous devices display the highest specific capacitance of 83 F g at 2 A g with a specific energy of 33.4 W h kg at 1700 W kg.

摘要

本文重点介绍了采用液态感应熔炼技术制备的用于超级电容器应用的(FeCoNiCuMn)O高熵氧化物。纳米结构的高熵氧化物具有更多的活性位点,可促进与过渡金属阳离子(如铁、锰、镍、钴和铜)的表面氧化还原过程,这有助于提高比功率、长期循环稳定性和比电容。将熔融并球磨的高熵合金纳米颗粒进行退火以形成高熵氧化物,该氧化物用作超级电容器应用的正极;对于优化后的3M KOH电解质,在5mV s的电流速率下,其比电容最高可达313F g。通过稻草生物炭热解制备的生物炭在5mV s时的最大比电容为232F g。所制备的水系器件在2A g时的比电容最高可达83F g,在1700W kg时的比能量为33.4W h kg。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfdd/11500537/fc76d26b1589/d4ra05204h-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验