Lal Mamta Sham, Sundara Ramaprabhu
Alternative Energy and Nanotechnology Laboratory (AENL), Department of Physics , Indian Institute of Technology Madras , Chennai 600036 , India.
ACS Appl Mater Interfaces. 2019 Aug 28;11(34):30846-30857. doi: 10.1021/acsami.9b08794. Epub 2019 Aug 19.
This report anticipates a thorough strategy for the utilization of high entropy oxide (HEO) nanoparticles (1) as a cost-effective catalyst for the growth of high yield carbon nanotubes (CNTs), resulting in HEO-CNT nanocomposites, and (2) the implementation of HEO-CNT nanocomposites for energy applications such as electrochemical capacitors (ECs). In the first step, HEO nanoparticles were synthesized by a simple sol-gel autocombustion method and then the as-synthesized HEO nanoparticles were ground and used as the catalyst for the growth of CNTs by chemical vapor deposition technique. The as-grown CNTs (HEO-CNT nanocomposite) exhibited unexpectedly high yield, a superior specific surface area of ∼151 m g, and encapsulation and diffusion of the catalyst throughout the HEO-CNT nanocomposite, providing remarkably high mechanical strength, which make them a promising candidate for energy applications. To study the electrochemical activity of the HEO-CNT nanocomposite, half-cell and full-cell ECs were assembled in different electrolytes. Stupendously, a complete 100% capacitance retention and a Coulombic efficiency up to 15 000 cycles were realized for the HEO-CNT nanocomposite-based full-cell EC assembled in the polyvinyl alcohol/HSO hydrogel electrolyte. Additionally, a high specific capacitance value of 286.0 F g at a scan rate of 10 mV s for the HEO-CNT nanocomposite-based full-cell EC assembled in the [BMIM][TFSI] electrolyte with a wide potential window of 2.5 V is reported. Also, high energy density and power density of ∼217 W h kg and ∼24 521 W kg, respectively, are reported. Furthermore, the HEO-CNT nanocomposite-based full-cell EC assembled in the [BMIM][TFSI] electrolyte can successfully light up a red light-emitting diode, demonstrating great potential of the HEO-CNT nanocomposite in the various energy applications.
本报告预期了一种全面的策略,用于利用高熵氧化物(HEO)纳米颗粒:(1)作为一种具有成本效益的催化剂,用于高产率碳纳米管(CNT)的生长,从而得到HEO-CNT纳米复合材料;(2)将HEO-CNT纳米复合材料应用于诸如电化学电容器(EC)等能源领域。第一步,通过简单的溶胶-凝胶自燃烧法合成HEO纳米颗粒,然后将合成的HEO纳米颗粒研磨,并用作通过化学气相沉积技术生长CNT的催化剂。生长出的CNT(HEO-CNT纳米复合材料)展现出意外的高产率、约151 m²/g的优异比表面积,以及催化剂在整个HEO-CNT纳米复合材料中的包裹和扩散,提供了显著高的机械强度,这使其成为能源应用的有前景的候选材料。为了研究HEO-CNT纳米复合材料的电化学活性,在不同电解质中组装了半电池和全电池EC。令人惊讶的是,对于在聚乙烯醇/硫酸氢盐(HSO)水凝胶电解质中组装的基于HEO-CNT纳米复合材料的全电池EC,实现了100%的完整电容保持率和高达15000次循环的库仑效率。此外,据报道,在具有2.5 V宽电位窗口的[BMIM][TFSI]电解质中组装的基于HEO-CNT纳米复合材料的全电池EC,在扫描速率为10 mV/s时具有286.0 F/g的高比电容值。还报道了分别约为217 W h/kg和约24521 W/kg的高能量密度和功率密度。此外,在[BMIM][TFSI]电解质中组装的基于HEO-CNT纳米复合材料的全电池EC能够成功点亮一个红色发光二极管,证明了HEO-CNT纳米复合材料在各种能源应用中的巨大潜力。