Suppr超能文献

在基于群体编码的计算系统中通过持续学习克服设备不可靠性。

Overcoming device unreliability with continuous learning in a population coding based computing system.

作者信息

Mizrahi Alice, Grollier Julie, Querlioz Damien, Stiles M D

机构信息

National Institute of Standards and Technology, Gaithersburg, USA.

Maryland NanoCenter, University of Maryland, College Park, USA.

出版信息

J Appl Phys. 2018;124(15). doi: 10.1063/1.5042250.

Abstract

The brain, which uses redundancy and continuous learning to overcome the unreliability of its components, provides a promising path to building computing systems that are robust to the unreliability of their constituent nanodevices. In this work, we illustrate this path by a computing system based on population coding with magnetic tunnel junctions that implement both neurons and synaptic weights. We show that equipping such a system with continuous learning enables it to recover from the loss of neurons and makes it possible to use unreliable synaptic weights ( low energy barrier magnetic memories). There is a tradeoff between power consumption and precision because low energy barrier memories consume less energy than high barrier ones. For a given precision, there is an optimal number of neurons and an optimal energy barrier for the weights that leads to minimum power consumption.

摘要

大脑利用冗余和持续学习来克服其组件的不可靠性,为构建对其组成纳米器件的不可靠性具有鲁棒性的计算系统提供了一条很有前景的途径。在这项工作中,我们通过一个基于群体编码的计算系统来说明这条途径,该系统使用磁隧道结来实现神经元和突触权重。我们表明,为这样一个系统配备持续学习能力能使其从神经元损失中恢复,并使得使用不可靠的突触权重(低能垒磁存储器)成为可能。功耗和精度之间存在权衡,因为低能垒存储器比高能垒存储器消耗的能量更少。对于给定的精度,存在一个最优的神经元数量和权重的最优能垒,可导致最低功耗。

相似文献

3
Neuromorphic Spintronics.神经形态自旋电子学
Nat Electron. 2020;3(7). doi: 10.1038/s41928-019-0360-9.
4
Energy-Efficient Artificial Synapses Based on Oxide Tunnel Junctions.基于氧化物隧道结的能量高效人工突触。
ACS Appl Mater Interfaces. 2019 Nov 20;11(46):43473-43479. doi: 10.1021/acsami.9b13434. Epub 2019 Nov 8.
9
Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines.随机突触助力高效受脑启发的学习机器。
Front Neurosci. 2016 Jun 29;10:241. doi: 10.3389/fnins.2016.00241. eCollection 2016.

本文引用的文献

7
Deep learning.深度学习。
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
8
Probabilistic brains: knowns and unknowns.概率大脑:已知与未知。
Nat Neurosci. 2013 Sep;16(9):1170-8. doi: 10.1038/nn.3495. Epub 2013 Aug 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验