Department of Biology, University of Florida, Gainesville, FL, USA.
Glob Chang Biol. 2014 Feb;20(2):641-52. doi: 10.1111/gcb.12417. Epub 2013 Oct 31.
High-latitude ecosystems store approximately 1700 Pg of soil carbon (C), which is twice as much C as is currently contained in the atmosphere. Permafrost thaw and subsequent microbial decomposition of permafrost organic matter could add large amounts of C to the atmosphere, thereby influencing the global C cycle. The rates at which C is being released from the permafrost zone at different soil depths and across different physiographic regions are poorly understood but crucial in understanding future changes in permafrost C storage with climate change. We assessed the inherent decomposability of C from the permafrost zone by assembling a database of long-term (>1 year) aerobic soil incubations from 121 individual samples from 23 high-latitude ecosystems located across the northern circumpolar permafrost zone. Using a three-pool (i.e., fast, slow and passive) decomposition model, we estimated pool sizes for C fractions with different turnover times and their inherent decomposition rates using a reference temperature of 5 °C. Fast cycling C accounted for less than 5% of all C in both organic and mineral soils whereas the pool size of slow cycling C increased with C : N. Turnover time at 5 °C of fast cycling C typically was below 1 year, between 5 and 15 years for slow turning over C, and more than 500 years for passive C. We project that between 20 and 90% of the organic C could potentially be mineralized to CO2 within 50 incubation years at a constant temperature of 5 °C, with vulnerability to loss increasing in soils with higher C : N. These results demonstrate the variation in the vulnerability of C stored in permafrost soils based on inherent differences in organic matter decomposability, and point toward C : N as an index of decomposability that has the potential to be used to scale permafrost C loss across landscapes.
高纬度生态系统储存了约 1700 Pg 的土壤碳(C),是目前大气中碳含量的两倍。永久冻土的融化和随后的永久冻土有机物质的微生物分解可能会向大气中添加大量的 C,从而影响全球碳循环。不同土壤深度和不同地貌区域的永久冻土带释放 C 的速率还不太清楚,但对于了解气候变化下永久冻土 C 储存的未来变化至关重要。我们通过汇集来自 23 个高纬度生态系统的 121 个单独样本的长期(> 1 年)有氧土壤培养的数据库,评估了永久冻土带 C 的固有可分解性。使用三库(即快速、慢速和被动)分解模型,我们使用 5°C 的参考温度估算了具有不同周转时间和固有分解率的 C 分数的库大小。快速循环 C 不到有机和矿物质土壤中所有 C 的 5%,而慢速循环 C 的库大小随着 C:N 的增加而增加。在 5°C 下快速循环 C 的周转时间通常不到 1 年,慢速循环 C 的周转时间在 5 到 15 年之间,而被动 C 的周转时间超过 500 年。我们预计,在 5°C 的恒定温度下,50 年的培养时间内,有 20%至 90%的有机 C 可能会矿化生成 CO2,而在 C:N 较高的土壤中,C 更容易流失。这些结果表明,基于有机物质可分解性的固有差异,永久冻土土壤中储存的 C 的脆弱性存在差异,并表明 C:N 作为可分解性的指标,有可能用于在景观尺度上预测永久冻土 C 的损失。