Iwagami Masao, Odani Kazunori, Saito Tomoki
Department of Health Services Research, Institute of Medicine, University of Tsukuba, Ibaraki, Japan.
Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom.
Kidney360. 2024 Dec 1;5(12):1862-1870. doi: 10.34067/KID.0000000608. Epub 2024 Oct 8.
This study estimated the kidney function decline rate over 10 years in the general population. We also developed a machine learning prediction model based on annual health checkup results and claims for the first 5 years. Prediction models for kidney function decline would be useful for stratifying the general population and identifying rapid decliners.
We aimed to estimate the rate of kidney function decline over 10 years in the general population and develop a machine learning model to predict it.
We used the JMDC database from 2012 to 2021, which includes company employees and their family members in Japan, where annual health checks are mandated for people aged 40–74 years. We estimated the slope (average change) of eGFR over a period of 10 years. Then, using the annual health-check results and prescription claims for the first 5 years from 2012 to 2016 as predictor variables, we developed an XGBoost model, evaluated its prediction performance with the root mean squared error (RMSE), R, and area under the receiver operating characteristic curve (AUROC) for rapid decliners (defined as the slope <−3 ml/min per 1.73 m per year) using five-fold cross validation, and compared these indicators with those of () the simple application of the eGFR slope from 2012 to 2016 and () the adjusted linear regression model.
We included 126,424 adults (mean age, 45.2 years; male, 82.4%; mean eGFR, 79.0 ml/min per 1.73 m in 2016). The mean slope was −0.89 (SD, 0.96) ml/min per 1.73 m per year. The predictive performance of the XGBoost model (RMSE, 0.78; R, 0.35; and AUROC, 0.89) was better than that of either the simple application of the eGFR slope from 2012 to 2016 (RMSE, 1.94; R, −3.03; and AUROC, 0.79) or the adjusted linear regression model (RMSE, 0.81; R, 0.30; and AUROC, 0.87).
We estimated the rate of kidney function decline over 10 years in the general population, as well as demonstrated that application of machine learning to annual health-check and claims data, provides better predictive performance compared with traditional methods.
本研究估计了普通人群10年的肾功能下降率。我们还基于前5年的年度健康检查结果和理赔数据开发了一个机器学习预测模型。肾功能下降的预测模型对于对普通人群进行分层和识别快速下降者将是有用的。
我们旨在估计普通人群10年的肾功能下降率,并开发一个机器学习模型来进行预测。
我们使用了2012年至2021年的JMDC数据库,该数据库包括日本的公司员工及其家庭成员,在日本,40 - 74岁的人群需要进行年度健康检查。我们估计了10年内估算肾小球滤过率(eGFR)的斜率(平均变化)。然后,使用2012年至2016年最初5年的年度健康检查结果和处方理赔作为预测变量,我们开发了一个极端梯度提升(XGBoost)模型,使用五折交叉验证,通过均方根误差(RMSE)、R以及快速下降者(定义为斜率 < -3 ml/min/1.73m²/年)的受试者操作特征曲线下面积(AUROC)来评估其预测性能,并将这些指标与(1)2012年至2016年eGFR斜率的简单应用和(2)调整后的线性回归模型的指标进行比较。
我们纳入了126,424名成年人(平均年龄45.2岁;男性占82.4%;2016年平均eGFR为79.0 ml/min/1.73m²)。平均斜率为 -0.89(标准差0.96)ml/min/1.73m²/年。XGBoost模型的预测性能(RMSE为0.78;R为0.35;AUROC为0.89)优于2012年至2016年eGFR斜率的简单应用(RMSE为1.94;R为 -3.03;AUROC为0.79)或调整后的线性回归模型(RMSE为0.81;R为0.30;AUROC为0.87)。
我们估计了普通人群10年的肾功能下降率,并且证明与传统方法相比,将机器学习应用于年度健康检查和理赔数据可提供更好的预测性能。