Suppr超能文献

包含生活方式因素的预测模型可提高肾脏替代治疗的预测能力:一项针对442714名亚洲成年人的队列研究。

A prediction model with lifestyle factors improves the predictive ability for renal replacement therapy: a cohort of 442 714 Asian adults.

作者信息

Tsai Min-Kuang, Gao Wayne, Chien Kuo-Liong, Hsu Chih-Cheng, Wen Chi-Pang

机构信息

Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.

College of Public Health, Taipei Medical University, Taipei, Taiwan.

出版信息

Clin Kidney J. 2022 Apr 30;15(10):1896-1907. doi: 10.1093/ckj/sfac119. eCollection 2022 Oct.

Abstract

BACKGROUND

There are limited renal replacement therapy (RRT) prediction models with good performance in the general population. We developed a model that includes lifestyle factors to improve predictive ability for RRT in the population at large.

METHODS

We used data collected between 1996 and 2017 from a medical screening in a cohort comprising 442 714 participants aged 20 years or over. After a median follow-up of 13 years, we identified 2212 individuals with end-stage renal disease (RRT, : 2091; kidney transplantation, : 121). We built three models for comparison: model 1: basic model, Kidney Failure Risk Equation with four variables (age, sex, estimated glomerular filtration rate and proteinuria); model 2: basic model + medical history + lifestyle risk factors; and model 3: model 2 + all significant clinical variables. We used the Cox proportional hazards model to construct a points-based model and applied the C statistic.

RESULTS

Adding lifestyle factors to the basic model, the C statistic improved in model 2 from 0.91 to 0.94 (95% confidence interval: 0.94, 0.95). Model 3 showed even better C statistic value i.e., 0.95 (0.95, 0.96). With a cut-off score of 33, model 3 identified 3% of individuals with RRT risk in 10 years. This model detected over half of individuals progressing to RRT, which was higher than the sensitivity of cohort participants with stage 3 or higher chronic kidney disease (0.53 versus 0.48).

CONCLUSIONS

Our prediction model including medical history and lifestyle factors improved the predictive ability for end-stage renal disease in the general population in addition to chronic kidney disease population.

摘要

背景

在普通人群中,性能良好的肾脏替代治疗(RRT)预测模型有限。我们开发了一个包含生活方式因素的模型,以提高对广大人群RRT的预测能力。

方法

我们使用了1996年至2017年间从一项医疗筛查中收集的数据,该队列包括442714名20岁及以上的参与者。经过13年的中位随访,我们确定了2212例终末期肾病患者(接受RRT治疗的有2091例;接受肾移植的有121例)。我们构建了三个模型进行比较:模型1:基本模型,即包含四个变量(年龄、性别、估计肾小球滤过率和蛋白尿)的肾衰竭风险方程;模型2:基本模型+病史+生活方式风险因素;模型3:模型2+所有显著的临床变量。我们使用Cox比例风险模型构建一个基于点数的模型,并应用C统计量。

结果

在基本模型中加入生活方式因素后,模型2的C统计量从0.91提高到0.94(95%置信区间:0.94,0.95)。模型3显示出更好的C统计量值,即0.95(0.95,0.96)。以33分为临界值,模型3在10年内识别出3%有RRT风险的个体。该模型检测出超过一半进展为RRT的个体,高于3期或更高分期慢性肾病队列参与者的敏感性(0.53对0.48)。

结论

我们的预测模型包括病史和生活方式因素,除了慢性肾病人群外,还提高了对普通人群终末期肾病的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/475d/9494522/722cc80ece1b/sfac119fig1g.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验