Ganatra Hammad A, Latifi Samir Q, Baloglu Orkun
Division of Pediatric Critical Care, Cleveland Clinic Children's, Cleveland, OH 44195, USA.
Division of Cardiology and Cardiovascular Medicine, Cleveland Clinic Children's, Cleveland, OH 44195, USA.
Bioengineering (Basel). 2024 Sep 26;11(10):962. doi: 10.3390/bioengineering11100962.
: To develop and validate machine learning models for predicting the length of stay (LOS) in the Pediatric Intensive Care Unit (PICU) using data from the Virtual Pediatric Systems (VPS) database. : A retrospective study was conducted utilizing machine learning (ML) algorithms to analyze and predict PICU LOS based on historical patient data from the VPS database. The study included data from over 100 North American PICUs spanning the years 2015-2020. After excluding entries with missing variables and those indicating recovery from cardiac surgery, the dataset comprised 123,354 patient encounters. Various ML models, including Support Vector Machine, Stochastic Gradient Descent Classifier, K-Nearest Neighbors, Decision Tree, Gradient Boosting, CatBoost, and Recurrent Neural Networks (RNNs), were evaluated for their accuracy in predicting PICU LOS at thresholds of 24 h, 36 h, 48 h, 72 h, 5 days, and 7 days. : Gradient Boosting, CatBoost, and RNN models demonstrated the highest accuracy, particularly at the 36 h and 48 h thresholds, with accuracy rates between 70 and 73%. These results far outperform traditional statistical and existing prediction methods that report accuracy of only around 50%, which is effectively unusable in the practical setting. These models also exhibited balanced performance between sensitivity (up to 74%) and specificity (up to 82%) at these thresholds. : ML models, particularly Gradient Boosting, CatBoost, and RNNs, show moderate effectiveness in predicting PICU LOS with accuracy slightly over 70%, outperforming previously reported human predictions. This suggests potential utility in enhancing resource and staffing management in PICUs. However, further improvements through training on specialized databases can potentially achieve better accuracy and clinical applicability.
利用虚拟儿科系统(VPS)数据库中的数据,开发并验证用于预测儿科重症监护病房(PICU)住院时间(LOS)的机器学习模型。
进行了一项回顾性研究,利用机器学习(ML)算法,基于VPS数据库中的历史患者数据来分析和预测PICU住院时间。该研究纳入了2015年至2020年期间来自100多个北美PICU的数据。在排除变量缺失的记录以及那些表明已从心脏手术中康复的记录后,数据集包含123354例患者就诊记录。对各种ML模型,包括支持向量机、随机梯度下降分类器、K近邻、决策树、梯度提升、CatBoost和循环神经网络(RNN),在24小时、36小时、48小时、72小时、5天和7天的阈值下预测PICU住院时间的准确性进行了评估。
梯度提升、CatBoost和RNN模型表现出最高的准确性,特别是在36小时和48小时的阈值时,准确率在70%至73%之间。这些结果远远优于传统统计方法和现有的预测方法,后者报告的准确率仅约为50%,在实际应用中几乎无法使用。这些模型在这些阈值下还表现出敏感性(高达74%)和特异性(高达82%)之间的平衡性能。
ML模型,特别是梯度提升、CatBoost和RNN,在预测PICU住院时间方面显示出中等效果,准确率略高于70%,优于先前报道的人工预测。这表明在加强PICU的资源和人员配置管理方面具有潜在用途。然而,通过在专门数据库上进行训练进一步改进可能会实现更高的准确性和临床适用性。