Iwamoto Masami, Atsumi Noritoshi, Kato Daichi
Human Science Research-Domain, Toyota Central R&D Labs., Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192, Japan.
Biomimetics (Basel). 2024 Oct 11;9(10):618. doi: 10.3390/biomimetics9100618.
Simultaneous and cooperative muscle activation results in involuntary posture stabilization in vertebrates. However, the mechanism through which more muscles than joints contribute to this stabilization remains unclear. We developed a computational human body model with 949 muscle action lines and 22 joints and examined muscle activation patterns for stabilizing right upper or lower extremity motions at a neutral body posture (NBP) under gravity using actor-critic reinforcement learning (ACRL). Two feedback control models (FCM), muscle length change (FCM-ML) and joint angle differences, were applied to ACRL with a normalized Gaussian network (ACRL-NGN) or deep deterministic policy gradient. Our findings indicate that among the six control methods, ACRL-NGN with FCM-ML, utilizing solely antagonistic feedback control of muscle length change without relying on synergy pattern control or categorizing muscles as flexors, extensors, agonists, or synergists, achieved the most efficient involuntary NBP stabilization. This finding suggests that vertebrate muscles are fundamentally controlled without categorization of muscles for targeted joint motion and are involuntarily controlled to achieve the NBP, which is the most comfortable posture under gravity. Thus, ACRL-NGN with FCM-ML is suitable for controlling humanoid muscles and enables the development of a comfortable seat design.
同时且协同的肌肉激活会导致脊椎动物非自主的姿势稳定。然而,相较于关节数量更多的肌肉是如何促成这种稳定的机制仍不清楚。我们开发了一个具有949条肌肉作用线和22个关节的人体计算模型,并使用演员-评论家强化学习(ACRL)研究了在重力作用下稳定中立身体姿势(NBP)时右上肢或下肢运动的肌肉激活模式。两种反馈控制模型(FCM),即肌肉长度变化(FCM-ML)和关节角度差异,与归一化高斯网络(ACRL-NGN)或深度确定性策略梯度一起应用于ACRL。我们的研究结果表明,在六种控制方法中,采用FCM-ML的ACRL-NGN仅利用肌肉长度变化的拮抗反馈控制,不依赖协同模式控制或将肌肉分类为屈肌、伸肌、激动剂或协同肌,实现了最有效的非自主NBP稳定。这一发现表明,脊椎动物的肌肉在根本上是在不针对特定关节运动对肌肉进行分类的情况下进行控制的,并且是通过非自主控制来实现NBP的,NBP是重力作用下最舒适的姿势。因此,采用FCM-ML的ACRL-NGN适用于控制类人肌肉,并能够开发出舒适的座椅设计。