Suppr超能文献

基于数据驱动的飞行手感机翼稀疏传感器布局优化:仿生方法与应用

Data-Driven Sparse Sensor Placement Optimization on Wings for Flight-By-Feel: Bioinspired Approach and Application.

作者信息

Hollenbeck Alex C, Beachy Atticus J, Grandhi Ramana V, Pankonien Alexander M

机构信息

Air Force Institute of Technology, Dayton, OH 45433-7765, USA.

Air Force Research Laboratory, Dayton, OH 45433-7765, USA.

出版信息

Biomimetics (Basel). 2024 Oct 17;9(10):631. doi: 10.3390/biomimetics9100631.

Abstract

Flight-by-feel (FBF) is an approach to flight control that uses dispersed sensors on the wings of aircraft to detect flight state. While biological FBF systems, such as the wings of insects, often contain hundreds of strain and flow sensors, artificial systems are highly constrained by size, weight, and power (SWaP) considerations, especially for small aircraft. An optimization approach is needed to determine how many sensors are required and where they should be placed on the wing. Airflow fields can be highly nonlinear, and many local minima exist for sensor placement, meaning conventional optimization techniques are unreliable for this application. The Sparse Sensor Placement Optimization for Prediction (SSPOP) algorithm extracts information from a dense array of flow data using singular value decomposition and linear discriminant analysis, thereby identifying the most information-rich sparse subset of sensor locations. In this research, the SSPOP algorithm is evaluated for the placement of artificial hair sensors on a 3D delta wing model with a 45° sweep angle and a blunt leading edge. The sensor placement solution, or design point (DP), is shown to rank within the top one percent of all possible solutions by root mean square error in angle of attack prediction. This research is the first to evaluate SSPOP on a 3D model and the first to include variable length hairs for variable velocity sensitivity. A comparison of SSPOP against conventional greedy search and gradient-based optimization shows that SSPOP DP ranks nearest to optimal in over 90 percent of models and is far more robust to model variation. The successful application of SSPOP in complex 3D flows paves the way for experimental sensor placement optimization for artificial hair-cell airflow sensors and is a major step toward biomimetic flight-by-feel.

摘要

凭感觉飞行(FBF)是一种飞行控制方法,它利用飞机机翼上的分布式传感器来检测飞行状态。虽然生物凭感觉飞行系统,如昆虫的翅膀,通常包含数百个应变和流量传感器,但人工系统在尺寸、重量和功率(SWaP)方面受到很大限制,特别是对于小型飞机。需要一种优化方法来确定需要多少个传感器以及它们应放置在机翼的何处。气流场可能高度非线性,并且传感器放置存在许多局部最小值,这意味着传统的优化技术在该应用中不可靠。预测稀疏传感器放置优化(SSPOP)算法使用奇异值分解和线性判别分析从密集的流量数据阵列中提取信息,从而识别传感器位置中信息最丰富的稀疏子集。在本研究中,对SSPOP算法在具有45°后掠角和钝前缘的三维三角翼模型上放置人工毛发传感器进行了评估。通过攻角预测的均方根误差,传感器放置解决方案或设计点(DP)显示在所有可能解决方案的前百分之一以内。本研究首次在三维模型上评估SSPOP,也是首次纳入可变长度毛发以实现可变速度灵敏度。将SSPOP与传统的贪婪搜索和基于梯度的优化进行比较表明,在超过90%的模型中,SSPOP DP最接近最优,并且对模型变化的鲁棒性要强得多。SSPOP在复杂三维流中的成功应用为人工毛细胞气流传感器的实验传感器放置优化铺平了道路,是迈向仿生凭感觉飞行的重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e0d/11505690/7c3e7f5dc20b/biomimetics-09-00631-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验