Suppr超能文献

基于深度学习的稀疏惯性传感器人体姿态重建的训练数据选择与最优传感器放置

Training Data Selection and Optimal Sensor Placement for Deep-Learning-Based Sparse Inertial Sensor Human Posture Reconstruction.

作者信息

Zheng Zhaolong, Ma Hao, Yan Weichao, Liu Haoyang, Yang Zaiyue

机构信息

Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen 518055, China.

出版信息

Entropy (Basel). 2021 May 10;23(5):588. doi: 10.3390/e23050588.

Abstract

Although commercial motion-capture systems have been widely used in various applications, the complex setup limits their application scenarios for ordinary consumers. To overcome the drawbacks of wearability, human posture reconstruction based on a few wearable sensors have been actively studied in recent years. In this paper, we propose a deep-learning-based sparse inertial sensor human posture reconstruction method. This method uses bidirectional recurrent neural network (Bi-RNN) to build an a priori model from a large motion dataset to build human motion, thereby the low-dimensional motion measurements are mapped to whole-body posture. To improve the motion reconstruction performance for specific application scenarios, two fundamental problems in the model construction are investigated: training data selection and sparse sensor placement. The problem of deep-learning training data selection is to select independent and identically distributed (IID) data for a certain scenario from the accumulated imbalanced motion dataset with sufficient information. We formulate the data selection into an optimization problem to obtain continuous and IID data segments, which comply with a small reference dataset collected from the target scenario. A two-step heuristic algorithm is proposed to solve the data selection problem. On the other hand, the optimal sensor placement problem is studied to exploit most information from partial observation of human movement. A method for evaluating the motion information amount of any group of wearable inertial sensors based on mutual information is proposed, and a greedy searching method is adopted to obtain the approximate optimal sensor placement of a given sensor number, so that the maximum motion information and minimum redundancy is achieved. Finally, the human posture reconstruction performance is evaluated with different training data and sensor placement selection methods, and experimental results show that the proposed method takes advantages in both posture reconstruction accuracy and model training time. In the 6 sensors configuration, the posture reconstruction errors of our model for walking, running, and playing basketball are 7.25°, 8.84°, and 14.13°, respectively.

摘要

尽管商业动作捕捉系统已广泛应用于各种领域,但其复杂的设置限制了普通消费者的应用场景。为克服可穿戴设备的缺点,近年来基于少量可穿戴传感器的人体姿态重建技术得到了积极研究。本文提出了一种基于深度学习的稀疏惯性传感器人体姿态重建方法。该方法利用双向循环神经网络(Bi-RNN)从大量运动数据集中构建先验模型来生成人体运动,从而将低维运动测量值映射到全身姿态。为提高特定应用场景下的运动重建性能,研究了模型构建中的两个基本问题:训练数据选择和稀疏传感器放置。深度学习训练数据选择问题是从积累的不平衡运动数据集中为特定场景选择具有足够信息的独立同分布(IID)数据。我们将数据选择问题转化为一个优化问题,以获得符合从目标场景收集的小参考数据集的连续IID数据段。提出了一种两步启发式算法来解决数据选择问题。另一方面,研究了最优传感器放置问题,以从人体运动的部分观测中获取最多信息。提出了一种基于互信息评估任意一组可穿戴惯性传感器运动信息量的方法,并采用贪婪搜索方法获得给定传感器数量下的近似最优传感器放置,以实现最大运动信息和最小冗余。最后,使用不同的训练数据和传感器放置选择方法评估人体姿态重建性能,实验结果表明,所提方法在姿态重建精度和模型训练时间方面均具有优势。在6传感器配置下,我们模型在步行、跑步和打篮球时的姿态重建误差分别为7.25°、8.84°和14.13°。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fbd/8151896/b9959000a6a7/entropy-23-00588-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验