Suppr超能文献

利用卷积神经网络和迁移学习从X射线图像中增强新冠病毒检测

Enhanced COVID-19 Detection from X-ray Images with Convolutional Neural Network and Transfer Learning.

作者信息

Bani Baker Qanita, Hammad Mahmoud, Al-Smadi Mohammed, Al-Jarrah Heba, Al-Hamouri Rahaf, Al-Zboon Sa'ad A

机构信息

Faculty of Computer and Information Technology, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan.

Digital Learning and Online Education Office (DLOE), Qatar University, Doha 2713, Qatar.

出版信息

J Imaging. 2024 Oct 13;10(10):250. doi: 10.3390/jimaging10100250.

Abstract

The global spread of Coronavirus (COVID-19) has prompted imperative research into scalable and effective detection methods to curb its outbreak. The early diagnosis of COVID-19 patients has emerged as a pivotal strategy in mitigating the spread of the disease. Automated COVID-19 detection using Chest X-ray (CXR) imaging has significant potential for facilitating large-scale screening and epidemic control efforts. This paper introduces a novel approach that employs state-of-the-art Convolutional Neural Network models (CNNs) for accurate COVID-19 detection. The employed datasets each comprised 15,000 X-ray images. We addressed both binary (Normal vs. Abnormal) and multi-class (Normal, COVID-19, Pneumonia) classification tasks. Comprehensive evaluations were performed by utilizing six distinct CNN-based models (Xception, Inception-V3, ResNet50, VGG19, DenseNet201, and InceptionResNet-V2) for both tasks. As a result, the Xception model demonstrated exceptional performance, achieving 98.13% accuracy, 98.14% precision, 97.65% recall, and a 97.89% F1-score in binary classification, while in multi-classification it yielded 87.73% accuracy, 90.20% precision, 87.73% recall, and an 87.49% F1-score. Moreover, the other utilized models, such as ResNet50, demonstrated competitive performance compared with many recent works.

摘要

新型冠状病毒(COVID-19)的全球传播促使人们迫切开展有关可扩展且有效的检测方法的研究,以遏制其爆发。COVID-19患者的早期诊断已成为减轻疾病传播的关键策略。利用胸部X光(CXR)成像进行COVID-19的自动检测在促进大规模筛查和疫情防控工作方面具有巨大潜力。本文介绍了一种新颖的方法,该方法采用先进的卷积神经网络模型(CNN)进行准确的COVID-19检测。所使用的数据集每个都包含15,000张X光图像。我们处理了二分类(正常与异常)和多分类(正常、COVID-19、肺炎)任务。通过使用六种不同的基于CNN的模型(Xception、Inception-V3、ResNet50、VGG19、DenseNet201和InceptionResNet-V2)对这两项任务进行了全面评估。结果,Xception模型表现出色,在二分类中准确率达到98.13%,精确率达到98.14%,召回率达到97.65%,F1分数达到97.89%,而在多分类中准确率为87.73%,精确率为90.20%,召回率为87.73%,F1分数为87.49%。此外,其他使用的模型,如ResNet50,与许多近期研究相比表现出了有竞争力的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/563c/11508642/eb06dc768f4c/jimaging-10-00250-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验