Suppr超能文献

基于深度学习方法的胸部 X 射线图像 COVID-19 分类。

COVID-19 Classification on Chest X-ray Images Using Deep Learning Methods.

机构信息

Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, 49132 Corfu, Greece.

出版信息

Int J Environ Res Public Health. 2023 Jan 22;20(3):2035. doi: 10.3390/ijerph20032035.

Abstract

Since December 2019, the coronavirus disease has significantly affected millions of people. Given the effect this disease has on the pulmonary systems of humans, there is a need for chest radiographic imaging (CXR) for monitoring the disease and preventing further deaths. Several studies have been shown that Deep Learning models can achieve promising results for COVID-19 diagnosis towards the CXR perspective. In this study, five deep learning models were analyzed and evaluated with the aim of identifying COVID-19 from chest X-ray images. The scope of this study is to highlight the significance and potential of individual deep learning models in COVID-19 CXR images. More specifically, we utilized the ResNet50, ResNet101, DenseNet121, DenseNet169 and InceptionV3 using Transfer Learning. All models were trained and validated on the largest publicly available repository for COVID-19 CXR images. Furthermore, they were evaluated on unknown data that was not used for training or validation, authenticating their performance and clarifying their usage in a medical scenario. All models achieved satisfactory performance where ResNet101 was the superior model achieving 96% in Precision, Recall and Accuracy, respectively. Our outcomes show the potential of deep learning models on COVID-19 medical offering a promising way for the deeper understanding of COVID-19.

摘要

自 2019 年 12 月以来,冠状病毒疾病已严重影响了数百万人。鉴于这种疾病对人类肺部系统的影响,需要进行胸部放射影像学(CXR)检查以监测疾病并防止进一步死亡。多项研究表明,深度学习模型可以在 CXR 角度上对 COVID-19 诊断取得有前途的结果。在这项研究中,分析和评估了五个深度学习模型,旨在从胸部 X 射线图像中识别 COVID-19。本研究的范围是强调单个深度学习模型在 COVID-19 CXR 图像中的意义和潜力。更具体地说,我们使用了 ResNet50、ResNet101、DenseNet121、DenseNet169 和 InceptionV3 进行了转移学习。所有模型均在最大的 COVID-19 CXR 图像公共可用存储库上进行了训练和验证。此外,还在未用于训练或验证的未知数据上对其进行了评估,从而验证了它们的性能,并阐明了它们在医疗场景中的用途。所有模型均取得了令人满意的性能,其中 ResNet101 的精度、召回率和准确性分别达到 96%。我们的研究结果表明,深度学习模型在 COVID-19 医疗方面具有潜力,为更深入地了解 COVID-19 提供了一种有希望的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae16/9915705/2c2e61201b77/ijerph-20-02035-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验