Suppr超能文献

重症监护病房内临床医生和访客的活动模式:一项关于环境监测如何为谵妄严重程度评估及护理升级提供信息的研究。

Clinician and Visitor Activity Patterns in an Intensive Care Unit Room: A Study to Examine How Ambient Monitoring Can Inform the Measurement of Delirium Severity and Escalation of Care.

作者信息

Nalaie Keivan, Herasevich Vitaly, Heier Laura M, Pickering Brian W, Diedrich Daniel, Lindroth Heidi

机构信息

Division of Nursing Research, Department of Nursing, Mayo Clinic, Rochester, MN 55905, USA.

Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA.

出版信息

J Imaging. 2024 Oct 14;10(10):253. doi: 10.3390/jimaging10100253.

Abstract

The early detection of the acute deterioration of escalating illness severity is crucial for effective patient management and can significantly impact patient outcomes. Ambient sensing technology, such as computer vision, may provide real-time information that could impact early recognition and response. This study aimed to develop a computer vision model to quantify the number and type (clinician vs. visitor) of people in an intensive care unit (ICU) room, study the trajectory of their movement, and preliminarily explore its relationship with delirium as a marker of illness severity. To quantify the number of people present, we implemented a counting-by-detection supervised strategy using images from ICU rooms. This was accomplished through developing three methods: single-frame, multi-frame, and tracking-to-count. We then explored how the type of person and distribution in the room corresponded to the presence of delirium. Our designed pipeline was tested with a different set of detection models. We report model performance statistics and preliminary insights into the relationship between the number and type of persons in the ICU room and delirium. We evaluated our method and compared it with other approaches, including density estimation, counting by detection, regression methods, and their adaptability to ICU environments.

摘要

早期发现病情严重程度不断升级的急性恶化情况对于有效的患者管理至关重要,并且会显著影响患者的治疗结果。环境感知技术,如计算机视觉,可能会提供能够影响早期识别和应对的实时信息。本研究旨在开发一种计算机视觉模型,以量化重症监护病房(ICU)房间内人员的数量和类型(临床医生与访客),研究他们的移动轨迹,并初步探索其与作为病情严重程度指标的谵妄之间的关系。为了量化在场人员的数量,我们使用来自ICU病房的图像实施了一种基于检测的计数监督策略。这是通过开发三种方法实现的:单帧法、多帧法和跟踪计数法。然后,我们探讨了人员类型和房间内分布与谵妄存在情况之间的对应关系。我们设计的流程使用了一组不同的检测模型进行测试。我们报告了模型性能统计数据以及对ICU病房内人员数量和类型与谵妄之间关系的初步见解。我们评估了我们的方法,并将其与其他方法进行了比较,包括密度估计、基于检测的计数、回归方法及其对ICU环境的适应性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3994/11508238/1f13f1db698d/jimaging-10-00253-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验