Zhou Kaiyang, Yang Yongxin, Cavallaro Andrea, Xiang Tao
IEEE Trans Pattern Anal Mach Intell. 2021 Mar 26;PP. doi: 10.1109/TPAMI.2021.3069237.
An effective person re-identification (re-ID) model should learn feature representations that are both discriminative, for distinguishing similar-looking people, and generalisable, for deployment across datasets without any adaptation. In this paper, we develop novel CNN architectures to address both challenges. First, we present a re-ID CNN termed omni-scale network (OSNet) to learn features that not only capture different spatial scales but also encapsulate a synergistic combination of multiple scales, namely omni-scale features. The basic building block consists of multiple convolutional streams, each detecting features at a certain scale. For omni-scale feature learning, a unified aggregation gate is introduced to dynamically fuse multi-scale features with channel-wise weights. OSNet is lightweight as its building blocks comprise factorised convolutions. Second, to improve generalisable feature learning, we introduce instance normalisation (IN) layers into OSNet to cope with cross-dataset discrepancies. Further, to determine the optimal placements of these IN layers in the architecture, we formulate an efficient differentiable architecture search algorithm. Extensive experiments show that, in the conventional same-dataset setting, OSNet achieves state-of-the-art performance, despite being much smaller than existing re-ID models. In the more challenging yet practical cross-dataset setting, OSNet beats most recent unsupervised domain adaptation methods without using any target data.
一个有效的行人重识别(re-ID)模型应该学习具有判别力的特征表示,以便区分长相相似的人,同时具有通用性,能够在无需任何适配的情况下跨数据集进行部署。在本文中,我们开发了新颖的卷积神经网络(CNN)架构来应对这两个挑战。首先,我们提出了一种名为全尺度网络(OSNet)的re-ID CNN,以学习不仅能捕捉不同空间尺度而且能封装多尺度协同组合(即全尺度特征)的特征。基本构建块由多个卷积流组成,每个卷积流在特定尺度上检测特征。对于全尺度特征学习,引入了一个统一的聚合门,以通过通道权重动态融合多尺度特征。OSNet很轻量级,因为其构建块包含分解卷积。其次,为了改进通用特征学习,我们将实例归一化(IN)层引入OSNet以应对跨数据集差异。此外,为了确定这些IN层在架构中的最佳位置,我们制定了一种高效的可微架构搜索算法。大量实验表明,在传统的同数据集设置中,尽管OSNet比现有的re-ID模型小得多,但它仍实现了领先的性能。在更具挑战性但更实际的跨数据集设置中,OSNet在不使用任何目标数据的情况下击败了最新的无监督域适应方法。