Igomu Elayoni E, Mamman Paul H, Adamu Jibril, Muhammad Maryam, Woziri Abubarkar O, Sugun Manasa Y, Benshak John A, Anyika Kingsley C, Sam-Gyang Rhoda, Ehizibolo David O
Bacterial Vaccine Production Department, National Veterinary Research Institute, Vom, Plateau State, Nigeria.
Department of Veterinary Microbiology, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.
PLoS One. 2025 Jan 10;20(1):e0306200. doi: 10.1371/journal.pone.0306200. eCollection 2025.
The global public health risk posed by Salmonella Kentucky (S. Kentucky) is rising, particularly due to the dissemination of antimicrobial resistance genes in human and animal populations. This serovar, widespread in Africa, has emerged as a notable cause of non-typhoidal gastroenteritis in humans. In this study, we used a bioinformatics approach to develop a peptide-based vaccine targeting epitopes from the outer membrane proteins A, C, and F of S. Kentucky. Additionally, we employed flagellin protein (fliC) from Salmonella Typhimurium (S. Typhimurium) as an adjuvant to enhance the vaccine's effectiveness. Through this approach, we identified 14 CD8+ and 7 CD4+ T-cell epitopes, which are predicted to be restricted by various MHC class I and MHC class II alleles. The predicted epitopes are expected to achieve a population coverage of 94.91% when used in vaccine formulations. Furthermore, we identified seven highly immunogenic linear B-cell epitopes and three conformational B-cell epitopes. These T-cell and B-cell epitopes were then linked using appropriate linkers to create a multi-epitope vaccine (MEV). To boost the immunogenicity of the peptide construct, fliC from S. Typhimurium was included at the N-terminal. The resulting MEV construct demonstrated high structural quality and favorable physicochemical properties. Molecular docking studies with Toll-like receptors 1, 2, 4, and 5, followed by molecular dynamic simulations, suggested that the vaccine-receptor complexes are energetically feasible, stable, and robust. Immune simulation results showed that the MEV elicited significant responses, including IgG, IgM, CD8+ T-cells, CD4+ T-cells, and various cytokines (IFN-γ, TGF-β, IL-2, IL-10, and IL-12), along with a noticeable reduction in antigen levels. Despite these promising in-silico findings, further validation through preclinical and clinical trials is required to confirm the vaccine's efficacy and safety.
肯塔基沙门氏菌(S. Kentucky)对全球公共卫生构成的风险正在上升,特别是由于抗菌抗性基因在人类和动物群体中的传播。这种血清型在非洲广泛存在,已成为人类非伤寒性肠胃炎的一个显著病因。在本研究中,我们采用生物信息学方法开发了一种基于肽的疫苗,该疫苗靶向肯塔基沙门氏菌外膜蛋白A、C和F的表位。此外,我们使用鼠伤寒沙门氏菌(S. Typhimurium)的鞭毛蛋白(fliC)作为佐剂来增强疫苗的效力。通过这种方法,我们鉴定出14个CD8 +和7个CD4 + T细胞表位,预计这些表位受各种MHC I类和MHC II类等位基因的限制。当用于疫苗制剂时,预测的表位预计可实现94.91%的人群覆盖率。此外,我们鉴定出七个高度免疫原性的线性B细胞表位和三个构象性B细胞表位。然后使用适当的连接子将这些T细胞和B细胞表位连接起来,以创建一种多表位疫苗(MEV)。为了提高肽构建体的免疫原性,在N端包含了鼠伤寒沙门氏菌的fliC。所得的MEV构建体显示出高结构质量和良好的理化性质。与Toll样受体1、2、4和5进行分子对接研究,随后进行分子动力学模拟,结果表明疫苗 - 受体复合物在能量上是可行的、稳定的且坚固的。免疫模拟结果表明,MEV引发了显著的反应,包括IgG、IgM、CD8 + T细胞、CD4 + T细胞和各种细胞因子(IFN - γ、TGF - β、IL - 2、IL - 10和IL - 12),同时抗原水平显著降低。尽管这些计算机模拟结果很有前景,但仍需要通过临床前和临床试验进行进一步验证,以确认疫苗的疗效和安全性。