Suppr超能文献

基于 DNA 编码化学库筛选命中物的 SARS-CoV-2 M 大环非共价抑制剂的合理设计,该命中物对泛冠状病毒同源物和奈玛特韦耐药变体具有强效抑制作用。

Rational Design of Macrocyclic Noncovalent Inhibitors of SARS-CoV-2 M from a DNA-Encoded Chemical Library Screening Hit That Demonstrate Potent Inhibition against Pan-Coronavirus Homologues and Nirmatrelvir-Resistant Variants.

机构信息

Arbutus Biopharma Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States.

X-Chem Inc., 4800 Rue Levy Suite 200, Montreal, QC CA H4R 2P7, Canada.

出版信息

J Med Chem. 2024 Nov 14;67(21):19623-19667. doi: 10.1021/acs.jmedchem.4c02009. Epub 2024 Oct 25.

Abstract

The recent global COVID-19 pandemic has highlighted treatments for coronavirus infection as an unmet medical need. The main protease (M) has been an important target for the development of SARS-CoV-2 direct-acting antivirals. Nirmatrelvir as a covalent M inhibitor was the first such approved therapy. Although M inhibitors of various chemical classes have been reported, they are generally less active against nirmatrelvir-resistant variants and have limited pan-coronavirus potential, presenting a significant human health risk upon future outbreaks. We here present a novel approach and utilized DNA-encoded chemical library screening to identify the noncovalent M inhibitor , which demonstrated a distinct binding mode to nirmatrelvir. A macrocyclization strategy designed to lock the active conformation resulted in lactone with significantly improved antiviral activity. Further optimization led to the potent lactam , which demonstrated exceptional potency against nirmatrelvir-resistant variants as well as against a panel of viral main proteases from other coronaviruses.

摘要

近期的全球 COVID-19 大流行凸显了治疗冠状病毒感染的需求尚未得到满足。主蛋白酶(M)一直是开发 SARS-CoV-2 直接作用抗病毒药物的重要靶点。奈玛特韦作为一种共价 M 抑制剂,是首个获得批准的此类治疗药物。尽管已经报道了各种化学类别的 M 抑制剂,但它们通常对奈玛特韦耐药变体的活性较低,对泛冠状病毒的潜力有限,在未来的爆发中对人类健康构成重大风险。我们在此提出了一种新方法,并利用 DNA 编码化学文库筛选来鉴定非共价 M 抑制剂 ,该抑制剂对奈玛特韦表现出独特的结合模式。为了锁定活性构象而设计的大环化策略导致了内酯 的抗病毒活性显著提高。进一步的优化导致了具有强大活性的内酰胺 ,它对奈玛特韦耐药变体以及其他冠状病毒的一组病毒主蛋白酶都具有出色的抑制活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验