Suppr超能文献

使用SAM对协作记忆进行建模。

Modeling collaborative memory with SAM.

作者信息

Mannering Willa M, Rajaram Suparna, Shiffrin Richard M, Jones Michael N

机构信息

Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.

Department of Psychology, Stony Brook University, Stony Brook, NY, USA.

出版信息

Mem Cognit. 2025 May;53(4):1245-1258. doi: 10.3758/s13421-024-01647-z. Epub 2024 Oct 25.

Abstract

While humans often encode and retrieve memories in groups, the bulk of our knowledge of human memory comes from paradigms with individuals in isolation. The primary phenomenon of interest within the relatively new field of collaborative memory is collaborative inhibition: the tendency for collaborative groups to underperform in free recall tasks compared with noncollaborative groups of the same size. This effect has been found in a variety of materials and group compositions. However, most research in this field is led by verbal conceptual theories without guidance from formal computational models. We present a framework to scale the Search of Associative Memory model (SAM) to collaborative free recall paradigms with multiple models working together. Multiple SAM models recalling together naturally produce collaborative inhibition when the group members use recalls by the group as cues to retrieve from memory, strongly supporting the "retrieval disruption" hypothesis. This work shows that SAM can act as a unified theory to explain both individual and collaborative memory effects and offers a framework for future predictions of scaling to increased group sizes, shared knowledge, and factors facilitating the spread of false memories in groups.

摘要

虽然人类常常以群体的方式编码和提取记忆,但我们对人类记忆的大部分了解都来自于个体孤立参与的范式。在相对较新的协作记忆领域中,主要关注的现象是协作抑制:与同等规模的非协作群体相比,协作群体在自由回忆任务中的表现往往较差。这种效应在各种材料和群体构成中都有发现。然而,该领域的大多数研究都是由言语概念理论主导,缺乏形式计算模型的指导。我们提出了一个框架,将关联记忆搜索模型(SAM)扩展到多个模型共同工作的协作自由回忆范式。当群体成员将群体的回忆作为从记忆中检索的线索时,多个一起回忆的SAM模型自然会产生协作抑制,这有力地支持了“检索干扰”假说。这项工作表明,SAM可以作为一种统一的理论来解释个体和协作记忆效应,并为未来预测扩展到更大群体规模、共享知识以及促进群体中错误记忆传播的因素提供了一个框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验