IEEE Trans Biomed Eng. 2024 Nov;71(11):3160-3169. doi: 10.1109/TBME.2024.3409642.
Necrotizing Enterocolitis (NEC) is a devastating condition affecting prematurely born neonates. Reviewing Abdominal X-rays (AXRs) is a key step in NEC diagnosis, staging and treatment decision-making, but poses significant challenges due to the subtle, difficult-to-identify radiological signs of the disease. In this paper, we propose AIDNEC - AI Diagnosis of NECrotizing enterocolitis, a deep learning method to automatically detect and stratify the severity (surgical or medical) of NEC from no pathology in AXRs. The model is trainable end-to-end and integrates a Detection Transformer and Graph Convolution modules for localizing discriminative areas in AXRs, used to formulate subtle local embeddings. These are then combined with global image features to perform Fine-Grained Visual Classification (FGVC). We evaluate AIDNEC on our GOSH NEC dataset of 1153 images from 334 patients, achieving 79.7% accuracy in classifying NEC against No Pathology. AIDNEC outperforms the backbone by 2.6%, FGVC models by 2.5% and CheXNet by 4.2%, with statistically significant (two-tailed p 0.05) improvements, while providing meaningful discriminative regions to support the classification decision. Additional validation in the publicly available Chest X-ray14 dataset yields comparable performance to state-of-the-art methods, illustrating AIDNEC's robustness in a different X-ray classification task.
坏死性小肠结肠炎(NEC)是一种影响早产儿的破坏性疾病。审查腹部 X 光片(AXR)是 NEC 诊断、分期和治疗决策的关键步骤,但由于疾病的放射学征象细微且难以识别,因此存在很大的挑战。在本文中,我们提出了 AIDNEC——用于自动检测和分层 AXR 中 NEC 严重程度(手术或非手术)的深度学习方法。该模型是端到端可训练的,集成了检测转换器和图卷积模块,用于在 AXR 中定位有区别的区域,用于制定细微的局部嵌入。然后将这些与全局图像特征相结合,以进行细粒度视觉分类(FGVC)。我们在 GOSH NEC 数据集上评估了 AIDNEC,该数据集包含 334 名患者的 1153 张图像,在对无病理学的 NEC 进行分类时,准确率达到 79.7%。AIDNEC 比骨干网络提高了 2.6%,比 FGVC 模型提高了 2.5%,比 CheXNet 提高了 4.2%,且具有统计学意义(双侧 p < 0.05)的改善,同时提供有意义的区分区域以支持分类决策。在公开的 Chest X-ray14 数据集上进行的额外验证表明,该方法在不同的 X 射线分类任务中具有鲁棒性,性能与最先进的方法相当。