Suppr超能文献

人工智能和机器学习在坏死性小肠结肠炎和新生儿败血症精准医学中的进展:最新综述

Advances in Artificial Intelligence and Machine Learning for Precision Medicine in Necrotizing Enterocolitis and Neonatal Sepsis: A State-of-the-Art Review.

作者信息

Duci Miriam, Verlato Giovanna, Moschino Laura, Uccheddu Francesca, Fascetti-Leon Francesco

机构信息

Division of Pediatric Surgery, Department of Women's and Children's Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.

Pediatric Surgery Unit, Division of Women's and Children's Health, Padova University Hospital, 35128 Padova, Italy.

出版信息

Children (Basel). 2025 Apr 13;12(4):498. doi: 10.3390/children12040498.

Abstract

Necrotizing enterocolitis remains one of the most severe gastrointestinal diseases in neonates, particularly affecting preterm infants. It is characterized by intestinal inflammation and necrosis, with significant morbidity and mortality despite advancements in neonatal care. Recent advancements in artificial intelligence (AI) and machine learning (ML) have shown potential in improving NEC prediction, early diagnosis, and management. A systematic search was conducted across multiple databases to explore the application of AI and ML in predicting NEC risk, diagnosing the condition at early stages, and optimizing treatment strategies.AI-based models demonstrated enhanced accuracy in NEC risk stratification compared to traditional clinical approaches. Machine learning algorithms identified novel biomarkers associated with disease onset and severity. Additionally, deep learning applied to medical imaging improved NEC diagnosis by detecting abnormalities earlier than conventional methods. The integration of AI and ML in NEC research provides promising insights into patient-specific risk assessment. However, challenges such as data heterogeneity, model interpretability, and the need for large-scale validation studies remain. Future research should focus on translating AI-driven findings into clinical practice, ensuring ethical considerations and regulatory compliance.

摘要

坏死性小肠结肠炎仍然是新生儿中最严重的胃肠道疾病之一,尤其影响早产儿。其特征为肠道炎症和坏死,尽管新生儿护理有所进步,但仍有显著的发病率和死亡率。人工智能(AI)和机器学习(ML)的最新进展已显示出在改善坏死性小肠结肠炎预测、早期诊断和管理方面的潜力。我们在多个数据库中进行了系统检索,以探索人工智能和机器学习在预测坏死性小肠结肠炎风险、早期诊断该病以及优化治疗策略方面的应用。与传统临床方法相比,基于人工智能的模型在坏死性小肠结肠炎风险分层方面显示出更高的准确性。机器学习算法识别出了与疾病发生和严重程度相关的新型生物标志物。此外,应用于医学成像的深度学习通过比传统方法更早地检测到异常情况,改善了坏死性小肠结肠炎的诊断。人工智能和机器学习在坏死性小肠结肠炎研究中的整合为针对特定患者的风险评估提供了有前景的见解。然而,数据异质性、模型可解释性以及大规模验证研究的需求等挑战仍然存在。未来的研究应专注于将人工智能驱动的研究结果转化为临床实践,确保符合伦理考量和监管要求。

相似文献

5
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验