Laboratory for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-3602 Thun, Switzerland.
Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland.
ACS Appl Mater Interfaces. 2024 Nov 6;16(44):60018-60026. doi: 10.1021/acsami.4c14689. Epub 2024 Oct 25.
Healthcare-associated infections (HCAIs) pose a significant global health challenge, exacerbated by the rising threat of antimicrobial resistance (AMR). This study introduces a high-throughput platform designed to identify sustainable antibacterial surfaces, exemplified by a copper-silver-zirconium (CuAgZr) alloy library. Utilizing combinatorial synthesis and advanced characterization techniques, material libraries (MatLibs) are generated and evaluated to rapidly screen diverse alloy compositions. The results demonstrate the ability to reproducibly create alloys with significant antimicrobial properties and high hardness, making them suitable for biomedical applications. The study highlights the critical role of compositional precision in developing materials that balance mechanical strength with antibacterial efficacy. Additionally, this approach ensures significant cost-effectiveness, facilitating the identification of economically viable alloy compositions. This research underscores the potential of high-throughput materials science to expedite the discovery of sustainable solutions for reducing HCAIs and addressing AMR, signaling a leap forward in sustainable healthcare material development.
医疗保健相关感染(HAI)是一个重大的全球健康挑战,而抗菌药物耐药性(AMR)的威胁日益加剧,使这一问题更加严重。本研究引入了一个高通量平台,旨在确定可持续的抗菌表面,以铜-银-锆(CuAgZr)合金库为例。利用组合合成和先进的表征技术,生成并评估材料库(MatLibs),以快速筛选不同的合金成分。结果表明,该平台能够重复地制造出具有显著抗菌性能和高硬度的合金,使其适用于生物医学应用。本研究强调了在开发兼具机械强度和抗菌功效的材料时,精确控制成分的重要性。此外,这种方法还具有显著的成本效益,有助于确定具有经济可行性的合金成分。这项研究突显了高通量材料科学在加速发现可持续解决方案以减少 HAI 和应对 AMR 方面的潜力,为可持续的医疗保健材料开发迈出了重要一步。