Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
Sci Adv. 2024 Oct 25;10(43):eadq3195. doi: 10.1126/sciadv.adq3195.
Piezoelectric biomaterials hold a pivotal role in the progression of bioelectronics and biomedicine, owing to their remarkable electromechanical properties, biocompatibility, and bioresorbability. However, their technological potential is restrained by certain challenges, including precise manipulation of nanobiomolecules, controlling their growth across nano-to-macro hierarchy, and tuning desirable mechanical properties. We report a high-speed thermal-electric driven aerosol (TEA) printing method capable of fabricating piezoelectric biofilms in a singular step. Electrohydrodynamic aerosolizing and in situ electrical poling allow instantaneous tuning of the spatial organization of biomolecular inks. We demonstrate TEA printing of β-glycine/polyvinylpyrrolidone films, and such films exhibit the piezoelectric voltage coefficient of 190 × 10 volt-meters per newton, surpassing that of industry-standard lead zirconate titanate by approximately 10-fold. Furthermore, these films demonstrate nearly two orders of magnitude improvement in mechanical flexibility compared to glycine crystals. We also demonstrate the ultrasonic energy harvesters based on the biofilms, providing the possibility of wirelessly powering bioelectronics.
压电生物材料因其出色的机电性能、生物相容性和生物可吸收性,在生物电子学和生物医学的发展中起着关键作用。然而,它们的技术潜力受到某些挑战的限制,包括对纳米生物分子的精确操作、控制它们在纳米到宏观层次上的生长,以及调整理想的机械性能。我们报告了一种高速热电气驱动气溶胶(TEA)打印方法,该方法能够在单一步骤中制造压电生物膜。电动力学气溶胶化和原位电极化允许即时调整生物分子墨水的空间组织。我们展示了β-甘氨酸/聚乙烯吡咯烷酮薄膜的 TEA 打印,并且这些薄膜表现出 190×10 伏特/米每牛顿的压电电压系数,比工业标准的锆钛酸铅大约高出 10 倍。此外,与甘氨酸晶体相比,这些薄膜在机械柔韧性方面提高了近两个数量级。我们还展示了基于这些生物膜的超声能量收集器,为无线供电生物电子学提供了可能性。