Suppr超能文献

基于高度自对准压电生物膜的柔性、可生物降解超声无线电疗装置。

Flexible, biodegradable ultrasonic wireless electrotherapy device based on highly self-aligned piezoelectric biofilms.

机构信息

College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China.

Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.

出版信息

Sci Adv. 2024 May 31;10(22):eadn0260. doi: 10.1126/sciadv.adn0260.

Abstract

Biodegradable piezoelectric devices hold great promise in on-demand transient bioelectronics. Existing piezoelectric biomaterials, however, remain obstacles to the development of such devices due to difficulties in large-scale crystal orientation alignment and weak piezoelectricity. Here, we present a strategy for the synthesis of optimally orientated, self-aligned piezoelectric γ-glycine/polyvinyl alcohol (γ-glycine/PVA) films via an ultrasound-assisted process, guided by density functional theory. The first-principles calculations reveal that the negative piezoelectric effect of γ-glycine originates from the stretching and compression of glycine molecules induced by hydrogen bonding interactions. The synthetic γ-glycine/PVA films exhibit a piezoelectricity of 10.4 picocoulombs per newton and an ultrahigh piezoelectric voltage coefficient of 324 × 10 volt meters per newton. The biofilms are further developed into flexible, bioresorbable, wireless piezo-ultrasound electrotherapy devices, which are demonstrated to shorten wound healing by ~40% and self-degrade in preclinical wound models. These encouraging results offer reliable approaches for engineering piezoelectric biofilms and developing transient bioelectronics.

摘要

可生物降解的压电设备在按需瞬态生物电子学中具有巨大的应用潜力。然而,现有的压电生物材料由于在大规模晶体取向排列和弱压电性方面存在困难,仍然是此类设备发展的障碍。在这里,我们提出了一种通过超声辅助工艺,在密度泛函理论指导下合成优化取向、自对准的γ-甘氨酸/聚乙烯醇(γ-甘氨酸/PVA)薄膜的策略。第一性原理计算表明,γ-甘氨酸的负压电效应源于氢键相互作用诱导的甘氨酸分子的拉伸和压缩。合成的γ-甘氨酸/PVA 薄膜表现出 10.4 皮库仑每牛顿的压电性和超高的压电电压系数 324×10 伏特每牛顿。生物膜进一步发展成灵活的、可生物吸收的、无线的压电超声电疗设备,在临床前伤口模型中证明可以将伤口愈合时间缩短约 40%,并自行降解。这些令人鼓舞的结果为工程化压电生物膜和开发瞬态生物电子学提供了可靠的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验