Xu Fenglan, Wang Weijiang, Zhao Wenbin, Zheng Huiyuan, Xin Huan, Sun Wentao, Ma Qingming
Department of Clinical Pharmacy, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; School of Pharmacy, Qingdao University, Qingdao 266071, China.
School of Pharmacy, Qingdao University, Qingdao 266071, China.
Int J Biol Macromol. 2024 Dec;282(Pt 1):136685. doi: 10.1016/j.ijbiomac.2024.136685. Epub 2024 Oct 23.
Wound healing comprises a series of complex physiological processes, including hemostasis, inflammation, cell proliferation, and tissue remodeling. Designing new functional biomaterials by biological macromolecules with tailored therapeutic effects to precisely match the unique requirements of each stage is cherished but rarely discussed. Here, we employ all-aqueous microfluidics to fabricate multifunctional core-shell microparticles aimed at promoting whole-stage wound healing. These microparticles feature a core comprising calcium alginate, cellulose nanocrystals and epidermal growth factor, surrounded by a shell made of alkylated chitosan, alginate, and ciprofloxacin (EGF + CNC@Ca-ALG/CIP@ACS core-shell microparticles, D-CSMP). Response surface methodology (RSM) with a combination of central composite rotatable design (CCRD) is used to meticulously optimize the fabrication processes, endowing the resulting D-CSMP with superior capabilities for efficiently encapsulating and controlled releasing CIP and EGF tailored to each stage aligning the healing timeline. The developed D-CSMP demonstrate notable time-sequential functionalities, including promoting blood coagulation, enhancing hemostasis, and exerting antibacterial effects. Furthermore, in a skin injury model, D-CSMP significantly expedite and enhance the chronic wound healing process. In conclusion, our core-shell microparticles with notable time-sequential functions present a versatile and robust approach for wound treatment and related biomedical applications.
伤口愈合包括一系列复杂的生理过程,包括止血、炎症、细胞增殖和组织重塑。利用具有定制治疗效果的生物大分子设计新型功能生物材料,以精确匹配每个阶段的独特需求,这是人们所期望的,但很少被讨论。在此,我们采用全水相微流控技术制备多功能核壳微粒,旨在促进全阶段伤口愈合。这些微粒的核心由海藻酸钙、纤维素纳米晶体和表皮生长因子组成,周围是由烷基化壳聚糖、海藻酸盐和环丙沙星制成的外壳(EGF + CNC@Ca-ALG/CIP@ACS核壳微粒,D-CSMP)。采用中心复合旋转设计(CCRD)相结合的响应面方法(RSM)精心优化制备工艺,使所得的D-CSMP具有卓越的能力,能够根据愈合时间线有效地封装和控制释放适合每个阶段的CIP和EGF。所开发的D-CSMP表现出显著的时间顺序功能,包括促进血液凝固、增强止血和发挥抗菌作用。此外,在皮肤损伤模型中,D-CSMP显著加速并增强慢性伤口愈合过程。总之,我们具有显著时间顺序功能的核壳微粒为伤口治疗和相关生物医学应用提供了一种通用且强大的方法。