Suppr超能文献

使用视觉Transformer对膀胱癌组织进行比较预测

Comparative Bladder Cancer Tissues Prediction Using Vision Transformer.

作者信息

Sunnetci Kubilay Muhammed, Oguz Faruk Enes, Ekersular Mahmut Nedim, Gulenc Nadide Gulsah, Ozturk Mahmut, Alkan Ahmet

机构信息

Department of Electrical and Electronics Engineering, Osmaniye Korkut Ata University, Osmaniye, Turkey.

Department of Electrical and Electronics Engineering, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey.

出版信息

J Imaging Inform Med. 2025 Jun;38(3):1722-1733. doi: 10.1007/s10278-024-01228-1. Epub 2024 Oct 25.

Abstract

Bladder cancer, often asymptomatic in the early stages, is a type of cancer where early detection is crucial. Herein, endoscopic images are meticulously evaluated by experts, and sometimes even by different disciplines, to identify tissue types. It is believed that the time spent by experts can be utilized for patient treatment with the creation of a computer-aided decision support system. For this purpose, in this study, it is evaluated that the performances of three models proposed using the bladder tissue dataset. The first model is a convolutional neural network (CNN)-based deep learning (DL) network, and the second is a model named hybrid cnn-machine learning (ML) or DL + ML, which involves classifying deep features obtained from a CNN-based network with ML. The last one, and the one that achieved the best performance metrics, is a vision transformer (ViT) architecture. Furthermore, a graphical user interface (GUI) is provided for an accessible decision support system. As a result, accuracy and F1 score values for DL, DL + ML, and ViT models are 0.9086-0.8971-0.9257 and 0.8884-0.8496-0.8931, respectively.

摘要

膀胱癌在早期通常没有症状,是一种早期检测至关重要的癌症类型。在此,专家们,有时甚至是不同学科的专家,会仔细评估内镜图像以识别组织类型。人们认为,通过创建计算机辅助决策支持系统,专家花费的时间可用于患者治疗。为此,在本研究中,对使用膀胱组织数据集提出的三种模型的性能进行了评估。第一个模型是基于卷积神经网络(CNN)的深度学习(DL)网络,第二个是名为混合CNN-机器学习(ML)或DL+ML的模型,它涉及使用ML对从基于CNN的网络获得的深度特征进行分类。最后一个,也是性能指标最佳的模型,是视觉Transformer(ViT)架构。此外,还提供了一个图形用户界面(GUI)用于构建一个易于使用的决策支持系统。结果,DL、DL+ML和ViT模型的准确率和F1分数值分别为0.9086 - 0.8971 - 0.9257和0.8884 - 0.8496 - 0.8931。

相似文献

1
Comparative Bladder Cancer Tissues Prediction Using Vision Transformer.使用视觉Transformer对膀胱癌组织进行比较预测
J Imaging Inform Med. 2025 Jun;38(3):1722-1733. doi: 10.1007/s10278-024-01228-1. Epub 2024 Oct 25.

本文引用的文献

1
Deep Network-Based Comprehensive Parotid Gland Tumor Detection.基于深度网络的腮腺肿瘤综合检测
Acad Radiol. 2024 Jan;31(1):157-167. doi: 10.1016/j.acra.2023.04.028. Epub 2023 Jun 3.
2
Semi-Supervised Bladder Tissue Classification in Multi-Domain Endoscopic Images.多领域内窥镜图像中的半监督膀胱组织分类。
IEEE Trans Biomed Eng. 2023 Oct;70(10):2822-2833. doi: 10.1109/TBME.2023.3265679. Epub 2023 Sep 27.
7
Bladder Cancer: A Review.膀胱癌:综述。
JAMA. 2020 Nov 17;324(19):1980-1991. doi: 10.1001/jama.2020.17598.
10
A deep learning approach to detect Covid-19 coronavirus with X-Ray images.一种利用X光图像检测新冠病毒的深度学习方法。
Biocybern Biomed Eng. 2020 Oct-Dec;40(4):1391-1405. doi: 10.1016/j.bbe.2020.08.008. Epub 2020 Sep 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验