Suppr超能文献

利用深度卷积神经网络进行乳腺X线摄影分类的分割

Segmentation for mammography classification utilizing deep convolutional neural network.

作者信息

Kumar Saha Dip, Hossain Tuhin, Safran Mejdl, Alfarhood Sultan, Mridha M F, Che Dunren

机构信息

Department of Computer Science and Engineering, Stamford University Bangladesh, Siddeswari, Dhaka, Bangladesh.

Department of Computer Science and Engineering, Jahangirnagar University, Savar, Dhaka, Bangladesh.

出版信息

BMC Med Imaging. 2024 Dec 18;24(1):334. doi: 10.1186/s12880-024-01510-2.

Abstract

BACKGROUND

Mammography for the diagnosis of early breast cancer (BC) relies heavily on the identification of breast masses. However, in the early stages, it might be challenging to ascertain whether a breast mass is benign or malignant. Consequently, many deep learning (DL)-based computer-aided diagnosis (CAD) approaches for BC classification have been developed.

METHODS

Recently, the transformer model has emerged as a method for overcoming the constraints of convolutional neural networks (CNN). Thus, our primary goal was to determine how well an improved transformer model could distinguish between benign and malignant breast tissues. In this instance, we drew on the Mendeley data repository's INbreast dataset, which includes benign and malignant breast types. Additionally, the segmentation anything model (SAM) method was used to generate the optimized cutoff for region of interest (ROI) extraction from all mammograms. We implemented a successful architecture modification at the bottom layer of a pyramid transformer (PTr) to identify BC from mammography images.

RESULTS

The proposed PTr model using a transfer learning (TL) approach with a segmentation technique achieved the best accuracy of 99.96% for binary classifications with an area under the curve (AUC) score of 99.98%, respectively. We also compared the performance of the proposed model with other transformer model vision transformers (ViT) and DL models, MobileNetV3 and EfficientNetB7, respectively.

CONCLUSIONS

In this study, a modified transformer model is proposed for BC prediction and mammography image classification using segmentation approaches. Data segmentation techniques accurately identify the regions affected by BC. Finally, the proposed transformer model accurately classified benign and malignant breast tissues, which is vital for radiologists to guide future treatment.

摘要

背景

乳腺钼靶检查用于早期乳腺癌(BC)的诊断在很大程度上依赖于乳腺肿块的识别。然而,在早期阶段,确定乳腺肿块是良性还是恶性可能具有挑战性。因此,已经开发了许多基于深度学习(DL)的计算机辅助诊断(CAD)方法用于乳腺癌分类。

方法

最近,Transformer模型已成为一种克服卷积神经网络(CNN)局限性的方法。因此,我们的主要目标是确定改进后的Transformer模型在区分良性和恶性乳腺组织方面的表现如何。在这种情况下,我们利用了Mendeley数据存储库中的INbreast数据集,该数据集包括良性和恶性乳腺类型。此外,使用分割一切模型(SAM)方法为从所有乳腺钼靶图像中提取感兴趣区域(ROI)生成优化的截止值。我们在金字塔Transformer(PTr)的底层成功实现了架构修改,以从乳腺钼靶图像中识别乳腺癌。

结果

所提出的使用迁移学习(TL)方法和分割技术的PTr模型在二元分类中分别实现了99.96%的最佳准确率和99.98%的曲线下面积(AUC)分数。我们还分别将所提出模型的性能与其他Transformer模型视觉Transformer(ViT)以及深度学习模型MobileNetV3和EfficientNetB7进行了比较。

结论

在本研究中,提出了一种改进的Transformer模型,用于使用分割方法进行乳腺癌预测和乳腺钼靶图像分类。数据分割技术准确识别受乳腺癌影响的区域。最后,所提出的Transformer模型准确地对良性和恶性乳腺组织进行了分类,这对放射科医生指导未来治疗至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ea/11656821/176271fd204f/12880_2024_1510_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验