Suppr超能文献

一种用于检测 X 射线图像中膝关节骨质疏松和骨量减少的新型深度学习模型。

A new superfluity deep learning model for detecting knee osteoporosis and osteopenia in X-ray images.

机构信息

Information Systems Department, Zagazig University, Zagazig, 44519, Egypt.

Department of Orthopedic Surgery, Zagazig University, Zagazig, 44519, Egypt.

出版信息

Sci Rep. 2024 Oct 25;14(1):25434. doi: 10.1038/s41598-024-75549-0.

Abstract

This study proposes a new deep-learning approach incorporating a superfluity mechanism to categorize knee X-ray images into osteoporosis, osteopenia, and normal classes. The superfluity mechanism suggests the use of two distinct types of blocks. The rationale is that, unlike a conventional serially stacked layer, the superfluity concept involves concatenating multiple layers, enabling features to flow into two branches rather than a single branch. Two knee datasets have been utilized for training, validating, and testing the proposed model. We use transfer learning with two pre-trained models, AlexNet and ResNet50, comparing the results with those of the proposed model. The results indicate that the performance of the pre-trained models, namely AlexNet and ResNet50, was inferior to that of the proposed Superfluity DL architecture. The Superfluity DL model demonstrated the highest accuracy (85.42% for dataset1 and 79.39% for dataset2) among all the pre-trained models.

摘要

本研究提出了一种新的深度学习方法,该方法结合了冗余机制,可将膝关节 X 射线图像分为骨质疏松症、骨质减少症和正常三类。冗余机制建议使用两种不同类型的块。其基本原理是,与传统的串联堆叠层不同,冗余概念涉及将多个层串联,从而使特征能够流入两个分支,而不是一个分支。该研究使用了两个膝关节数据集来训练、验证和测试所提出的模型。我们使用了两种预训练模型(AlexNet 和 ResNet50)进行迁移学习,并将结果与所提出的模型进行了比较。结果表明,预训练模型(即 AlexNet 和 ResNet50)的性能不如所提出的冗余深度学习(Superfluity DL)架构。在所有的预训练模型中,冗余深度学习模型表现出了最高的准确性(数据集 1 为 85.42%,数据集 2 为 79.39%)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d46d/11511848/2a0ea7697cca/41598_2024_75549_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验